LATERAL DIFFUSION OF MEMBRANE PROTEINS AT CELL MEMBRANE

2010 ◽  
Vol 24 (14) ◽  
pp. 1533-1540
Author(s):  
LEI FAN ◽  
TIAN YOU FAN

The cell membrane is an important organ of living cells, which has a complex structure influenced by the interaction between membrane proteins and cell membrane. On the basis of fluid motion and diffusion interaction, a simple model is proposed to evaluate quantitatively the effects of the protein size and membrane fluid velocity on the lateral diffusion of membrane proteins at the cell membrane. The study shows that the diffusion coefficient is a dominant factor on the lateral diffusion.

2021 ◽  
Author(s):  
Huipu Liu ◽  
Yunlong Chen ◽  
Jiawei Wang ◽  
Yuanjiao Yang ◽  
Huangxian Ju

Protein-membrane interactions play important roles in signal transductions and functional regulation of membrane proteins. Here, we design a molecular dynamometer (MDM) for analyzing protein-membrane interaction on living cells. The MDM...


FEBS Open Bio ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 1127-1134 ◽  
Author(s):  
Junichiro Ono ◽  
Satoko Fushimi ◽  
Shingo Suzuki ◽  
Kiyoshi Ameno ◽  
Hiroshi Kinoshita ◽  
...  

2019 ◽  
Vol 55 (28) ◽  
pp. 4043-4046 ◽  
Author(s):  
Yuanyuan Fan ◽  
Lu Li ◽  
Meng Lu ◽  
Haibin Si ◽  
Bo Tang

A signal amplification method is developed for visualization analysis of membrane proteins on living cells at a single-molecule level.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 891
Author(s):  
Xinwei Gao ◽  
Yanfeng Liu ◽  
Jia Zhang ◽  
Luwei Wang ◽  
Yong Guo ◽  
...  

Although conventional fluorescence intensity imaging can be used to qualitatively study the drug toxicity of nanodrug carrier systems at the single-cell level, it has limitations for studying nanodrug transport across membranes. Fluorescence correlation spectroscopy (FCS) can provide quantitative information on nanodrug concentration and diffusion in a small area of the cell membrane; thus, it is an ideal tool for studying drug transport across the membrane. In this paper, the FCS method was used to measure the diffusion coefficients and concentrations of carbon dots (CDs), doxorubicin (DOX) and CDs-DOX composites in living cells (COS7 and U2OS) for the first time. The drug concentration and diffusion coefficient in living cells determined by FCS measurements indicated that the CDs-DOX composite distinctively improved the transmembrane efficiency and rate of drug molecules, in accordance with the conclusions drawn from the fluorescence imaging results. Furthermore, the effects of pH values and ATP concentrations on drug transport across the membrane were also studied. Compared with free DOX under acidic conditions, the CDs-DOX complex has higher cellular uptake and better transmembrane efficacy in U2OS cells. Additionally, high concentrations of ATP will cause negative changes in cell membrane permeability, which will hinder the transmembrane transport of CDs and DOX and delay the rapid diffusion of CDs-DOX. The results of this study show that the FCS method can be utilized as a powerful tool for studying the expansion and transport of nanodrugs in living cells, and might provide a new drug exploitation strategy for cancer treatment in vivo.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 579
Author(s):  
Wanjae Choi ◽  
Hyunil Ryu ◽  
Ahmed Fuwad ◽  
Seulmini Goh ◽  
Chaoge Zhou ◽  
...  

Local anesthesia is a drug that penetrates the nerve cell membrane and binds to the voltage gate sodium channel, inhibiting the membrane potential and neurotransmission. It is mainly used in clinical uses to address the pain of surgical procedures in the local area. Local anesthetics (LAs), however, can be incorporated into the membrane, reducing the thermal stability of the membrane as well as altering membrane properties such as fluidity, permeability, and lipid packing order. The effects of LAs on the membrane are not yet fully understood, despite a number of previous studies. In particular, it is necessary to analyze which is the more dominant factor, the membrane affinity or the structural perturbation of the membrane. To analyze the effects of LAs on the cell membrane and compare the results with those from model membranes, morphological analysis and 50% inhibitory concentration (IC50) measurement of CCD-1064sk (fibroblast, human skin) membranes were carried out for lidocaine (LDC) and tetracaine (TTC), the most popular LAs in clinical use. Furthermore, the membrane affinity of the LAs was quantitatively analyzed using a colorimetric polydiacetylene assay, where the color shift represents their distribution in the membrane. Further, to confirm the membrane affinity and structural effects of the membranes, we performed an electrophysiological study using a model protein (gramicidin A, gA) and measured the channel lifetime of the model protein on the free-standing lipid bilayer according to the concentration of each LA. Our results show that when LAs interact with cell membranes, membrane affinity is a more dominant factor than steric or conformational effects of the membrane.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcos Penedo ◽  
Tetsuya Shirokawa ◽  
Mohammad Shahidul Alam ◽  
Keisuke Miyazawa ◽  
Takehiko Ichikawa ◽  
...  

AbstractOver the last decade, nanoneedle-based systems have demonstrated to be extremely useful in cell biology. They can be used as nanotools for drug delivery, biosensing or biomolecular recognition inside cells; or they can be employed to select and sort in parallel a large number of living cells. When using these nanoprobes, the most important requirement is to minimize the cell damage, reducing the forces and indentation lengths needed to penetrate the cell membrane. This is normally achieved by reducing the diameter of the nanoneedles. However, several studies have shown that nanoneedles with a flat tip display lower penetration forces and indentation lengths. In this work, we have tested different nanoneedle shapes and diameters to reduce the force and the indentation length needed to penetrate the cell membrane, demonstrating that ultra-thin and sharp nanoprobes can further reduce them, consequently minimizing the cell damage.


2003 ◽  
Vol 77 (8) ◽  
pp. 4985-4991 ◽  
Author(s):  
Carolyn M. Steffens ◽  
Thomas J. Hope

ABSTRACT The events preceding human immunodeficiency virus fusion and entry are influenced by the concentration and distribution of receptor and coreceptor molecules on the cell surface. However, the extent to which these proteins colocalize with one another in the cell membrane remains unclear. Using high-resolution deconvolution fluorescent microscopy of living cells, we found that both CD4 and CCR5 accumulate in protruding membrane structures containing actin and ezrin. Although CD4 and CCR5 extensively colocalize in these structures, they do not exist in a stable complex.


1996 ◽  
Vol 39 (11) ◽  
pp. 1860-1868 ◽  
Author(s):  
Bruno Stuhlmüller ◽  
Ricardo Jerez ◽  
Gert Hausdorf ◽  
Hans-R. Barthel ◽  
Michael Meurer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document