DESIGN OF HIGH EFFICIENCY AND LARGE SEPARATING ANGLE BEAM SPLITTER BASED ON PHOTONIC CRYSTAL CAVITY RESONATOR

2011 ◽  
Vol 25 (24) ◽  
pp. 1963-1969 ◽  
Author(s):  
HAO GUO ◽  
QINGHUA LIAO ◽  
TIANBAO YU ◽  
SHUWEN CHEN ◽  
YONGZHEN HUANG

We present the design and simulation of an ultracompact high efficiency beam splitter based on propagation properties of the light waves in waveguide and cavity resonator. The splitting properties of the beam splitter have been numerically simulated and analyzed using the plane wave expansion (PWE) method and finite difference time domain (FDTD) method. Then in order to minimize backward reflections and to obtain equal distribution of power, we placed a cavity resonator waveguides to optimize the devices. It is shown that a beam splitter with high efficiency and large separating angle for TM mode can be achieved. There is no doubt that these excellent features will provide the structure a promising applying prospect for photonic integrated circuit.

2012 ◽  
Vol 27 (03) ◽  
pp. 1350019 ◽  
Author(s):  
QINGHUA LIAO ◽  
HAO GUO ◽  
TIANBAO YU ◽  
YONGZHEN HUANG

We propose and analyze a novel multiway high efficiency composite beam splitter based on propagation properties of the light waves in directional coupler (DC) and ring resonator. The spectral transmittance and splitting properties of the beam splitter have been numerically simulated and analyzed using the plane wave expansion (PWE) method and finite difference time domain (FDTD) method. By simply adjusting the symmetrical coupling rods in the ring resonators, inducing the redistribution of the power of the optical field, equipartition or free distribution of the light field energy can be achieved. It was shown that the novel composite beam splitter has a large separating angle, a high beam transmittance, and high flexibility. Furthermore, this beam splitter can be easily extended to the structure with more light output channels. These features of the proposed composite beam splitter make it a promising candidate in optical communication applications.


2019 ◽  
Vol 41 (1) ◽  
pp. 37-43 ◽  
Author(s):  
S. Naghizade ◽  
S. M. Sattari-Esfahlan

Abstract We have proposed simple ring resonator 5-channel demultiplexer based on optical channel drop filter analysis that is applicable at third communication window (1550 nm) range. Our proposed base filter is the important part in designing the demultiplexer, inclusive one ring resonator contains one square dielectric rod at core. Demultiplexer structure introduced by arranging five filter with different ring core refractive index. Insomuch every ring core have individual refractive index, thus each ring have diverse resonant wavelength. Numerical results by the finite difference time domain (FDTD) method show quality factor (Q) and transmission efficiency of fundamental channel drop filter are 1038 and 93 %, respectively. It is found that transmission efficiency in designed demultiplexer is more than 90 % for each channel; channel spacing is less than 4.2 nm. The average crosstalk value, total footprint of demutiplexer is −17.85 dB, 689.61 μm2, respectively. Small size with a very simple ring design can be benefit in photonic integrated circuit.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Author(s):  
Sarvagya Dwivedi ◽  
Jon Kjellman ◽  
Tangla David ◽  
Mathias Prost ◽  
Olga Syshchyk ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3184
Author(s):  
Jing Li ◽  
Yonggang He ◽  
Han Ye ◽  
Tiesheng Wu ◽  
Yumin Liu ◽  
...  

Metasurface-based beam splitters attracted huge interest for their superior properties compared with conventional ones made of bulk materials. The previously reported designs adopted discrete metasurfaces with the limitation of a discontinuous phase profile. In this paper, we propose a dual-band beam splitter, based on an anisotropic quasi-continuous metasurface, by exploring the optical responses under x-polarized (with an electric field parallel to the direction of the phase gradient) and y-polarized incidences. The adopted metasurface consists of two identical trapezoidal silicon antenna arrays with opposite spatial variations that lead to opposite phase gradients. The operational window of the proposed beam splitter falls in the infrared and visible region, respectively, for x- and y-polarized light, resulting from the different mechanisms. When x-polarized light is incident, the conversion efficiency and total transmission of the beam splitter remains higher than 90% and 0.74 within the wavelength range from 969 nm to 1054 nm, respectively. In this condition, each array can act as a beam splitter of unequal power. For y-polarized incidence, the maximum conversion efficiency and transmission reach approximately 100% and 0.85, while the values remain higher than 90% and 0.65 in the wavelength range from 687 nm to 710 nm, respectively. In this case, each array can be viewed as an effective beam deflector. We anticipate that it can play a key role in future integrated optical devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


Author(s):  
Paul Verrinder ◽  
Lei Wang ◽  
Joseph Fridlander ◽  
Fengqiao Sang ◽  
Victoria Rosborough ◽  
...  

2013 ◽  
Vol 703 ◽  
pp. 282-286
Author(s):  
Ren Cai Zhang ◽  
Xiang Yu ◽  
Xing Ju Liu ◽  
Jin Hai Zhai ◽  
Zhen Wu Ning

An efficient automated milk detector based on freezing point depression is designed. This detector shares characters of high efficiency and good stability with accuracy and automation. Its main parts include temperature sensor of IC (Integrated Circuit), pinion-rack mechanism and crank-rocker mechanism and electronic control system. Monitoring in-situ change of milk freezing curve and developing efficiency of sampling can be available by means of pinion-rack mechanism and IC temperature sensor mechatronics design. As a result, adulterating status of milk can be discriminated in a rapid and accurate and automated way. The detector may be employed to detect liquid foods other than milk as well.


1994 ◽  
Vol 6 (8) ◽  
pp. 960-962 ◽  
Author(s):  
J.-M. Verdiell ◽  
T.L. Koch ◽  
B.I. Miller ◽  
M.E. Young ◽  
U. Koren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document