Superconducting state in a circular SQUID shaped mesoscopic film

2014 ◽  
Vol 28 (29) ◽  
pp. 1450230
Author(s):  
J. Barba-Ortega ◽  
Jose L. Aguilar ◽  
Jesús D. González

Using a thin-film approach to the time-dependent Ginzburg–Landau theory, we have studied the magnetization and order parameter profile in a thin mesoscopic superconductor in the so-called SQUID geometry. Our sample is circular with a hole at the center connected to the outer rim by a very thin slit. We have also studied the influence of the boundary conditions in the thin slit on the magnetization curve of the sample.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Perez-Salinas ◽  
Allan S. Johnson ◽  
Dharmalingam Prabhakaran ◽  
Simon Wall

AbstractSpontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.


2020 ◽  
Vol 62 (10) ◽  
pp. 1594
Author(s):  
А.Н. Лыков

The paper presents the results of a study of the properties of long cylindrical superconductors with a diameter of the order of coherence length ξ, performed in the framework of the Ginzburg-Landau theory (GL). Boundary conditions of general form are used for solution of the GL equa-tion for superconducting order parameter. Using such boundary conditions allows us to take into account the influence of the cylinder boundary on its superconducting properties. This ap-proach is important for small-diameter cylinders, whose properties significantly depend on the properties of their boundaries.


2014 ◽  
Vol 28 (31) ◽  
pp. 1450242
Author(s):  
Sindy J. Higuera ◽  
Miryam R. Joya ◽  
J. Barba-Ortega

In this work, we study the proximity and pinning effects of a rectangular superconducting anti-dot on the magnetization curve of a mesoscopic sample. We solve the nonlinear time-dependent Ginzburg–Landau equations for a superconducting rectangle in the presence of a magnetic field applied perpendicular to its surface. The pinning effects are determined by the number of vortices into the anti-dot. We calculate the order parameter, vorticity, magnetization and critical fields as a function of the external magnetic field. We found that the size and nature of the anti-dot strongly affect the magnetization of the sample. The results are discussed in framework of pinning and proximity effects in mesoscopic systems.


1989 ◽  
Vol 53 (372) ◽  
pp. 483-504 ◽  
Author(s):  
M. A. Carpenter ◽  
E. Salje

AbstractRecent advances in the use of time-dependent order parameter theory to describe the kinetics of order/disorder transitions are reviewed. The time dependence of a macroscopic order parameter, Q, follows, to a good approximation:For systems in which the order parameter has a long correlation length (large ξ) and is not conserved (small ξC), the Ginzburg-Landau equation provides a general kinetic solution:Specific rate laws can be derived from this general solution depending on whether the crystals remain homogeneous with respect to the order parameter, Q. The advantages of the overall approach are, firstly, that it does not depend on the detailed structure of the material being examined; secondly, that the order parameter can be followed experimentally through its relationship with other properties, such as spontaneous strain, excess entropy, intensities of superlattice reflections, etc.; and, finally, that conventional Landau expansions in Q may be used to describe the thermodynamic driving forces.For a simple second-order transition in crystals which remain homogeneous in Q the rate law is:If the free energy of activation varies with the state of order of the crystal, this becomes:Simplifying assumptions can be introduced into the mathematics, or the integrals can be solved numerically. For crystals which remain homogeneous, the simplest solution valid only over small deviations from equilibrium is:For crystals which develop heterogeneities in Q, the rate laws change significantly and we find as an extreme case:where the A coefficient may be temperature dependent.Experimental data available for a limited number of minerals (omphacite, anorthite, albite, cordierite and nepheline) are used to demonstrate the practical implications of the overall approach. As anticipated from the theory, modulated structures commonly develop during kinetic experiments, the observed rate laws depend on whether the critical point of the ordering is located at the centre or boundary of the Brillouin zone, and the rate laws for ordering and disordering can be quite different. The importance of different length scales, not only in the different techniques for characterizing states of order (IR, NMR, calorimetry, X-ray diffraction, etc.) but also for interpreting observed mechanisms and rate laws, is also outlined.Use of the order parameter in Landau expansions and in Ginzburg-Landau rate laws provides, in principle, a means of predicting the equilibrium and non-equilibrium evolution of minerals in nature.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 193 ◽  
Author(s):  
Giovanni Alberto Ummarino ◽  
Antonio Gallerati

We calculate the possible interaction between a superconductor and the static Earth’s gravitational fields, making use of the gravito-Maxwell formalism combined with the time-dependent Ginzburg–Landau theory. We try to estimate which are the most favorable conditions to enhance the effect, optimizing the superconductor parameters characterizing the chosen sample. We also give a qualitative comparison of the behavior of high–Tc and classical low–Tc superconductors with respect to the gravity/superfluid interplay.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Anatoly A. Barybin

Transport equations of the macroscopic superfluid dynamics are revised on the basis of a combination of the conventional (stationary) Ginzburg-Landau equation and Schrödinger's equation for the macroscopic wave function (often called the order parameter) by using the well-known Madelung-Feynman approach to representation of the quantum-mechanical equations in hydrodynamic form. Such an approach has given (a) three different contributions to the resulting chemical potential for the superfluid component, (b) a general hydrodynamic equation of superfluid motion, (c) the continuity equation for superfluid flow with a relaxation term involving the phenomenological parameters and , (d) a new version of the time-dependent Ginzburg-Landau equation for the modulus of the order parameter which takes into account dissipation effects and reflects the charge conservation property for the superfluid component. The conventional Ginzburg-Landau equation also follows from our continuity equation as a particular case of stationarity. All the results obtained are mutually consistent within the scope of the chosen phenomenological description and, being model-neutral, applicable to both the low- and high- superconductors.


2018 ◽  
Vol 145 ◽  
pp. 01009 ◽  
Author(s):  
Vassil M. Vassilev ◽  
Daniel M. Dantchev ◽  
Peter A. Djondjorov

In this article we consider a critical thermodynamic system with the shape of a thin film confined between two parallel planes. It is assumed that the state of the system at a given temperature and external ordering field is described by order-parameter profiles, which minimize the one-dimensional counterpart of the standard ϕ4 Ginzburg–Landau Hamiltonian and meet the so-called Neumann – Neumann boundary conditions. We give analytic representation of the extremals of this variational problem in terms ofWeierstrass elliptic functions. Then, depending on the temperature and ordering field we determine the minimizers and obtain the phase diagram in the temperature-field plane.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shuhong Chen ◽  
Zhong Tan

We establish strong solution theory of time-dependent Ginzburg-Landau (TDGL) systems on BCS-BEC crossover. By the properties of Besov, Sobolev spaces, and Fourier functions and the method of bootstrapping argument, we deduce that the global existence of strong solutions to time-dependent Ginzburg-Landau systems on BCS-BEC crossover in various spatial dimensions.


Sign in / Sign up

Export Citation Format

Share Document