Long wavelength superluminal pulse propagation in a defect slab doped with GaAs/AlGaAs multiple quantum well nanostructure

2015 ◽  
Vol 29 (33) ◽  
pp. 1550216 ◽  
Author(s):  
M. Panahi ◽  
G. Solookinejad ◽  
E. Ahmadi Sangachin ◽  
S. H. Asadpour

In this paper, long wavelength superluminal and subluminal properties of pulse propagation in a defect slab medium doped with four-level GaAs/AlGaAs multiple quantum wells (MQWs) with 15 periods of 17.5 nm GaAs wells and 15 nm [Formula: see text] barriers is theoretically discussed. It is shown that exciton spin relaxation (ESR) between excitonic states in MQWs can be used for controlling the superluminal and subluminal light transmissions and reflections at different wavelengths. We also show that reflection and transmission coefficients depend on the thickness of the slab for the resonance and nonresonance conditions. Moreover, we found that the ESR for nonresonance condition lead to superluminal light transmission and subluminal light reflection.

2001 ◽  
Vol 692 ◽  
Author(s):  
J. Zhao ◽  
X. D. Zhang ◽  
Z. C. Feng ◽  
J. C. Deng ◽  
P. Jin ◽  
...  

AbstractInGaAsP/InP multiple quantum wells have been prepared by Impurity-Free Vacancy Disordering (IFVD). The luminescent characteristics was investigated using photoluminescence (PL) and photoreflectance (PR), from which the band gap blue shift was observed. Si3N4, SiO2 and SOG were used for the dielectric layer to create the vacancies. All samples were annealed by rapid thermal anne aling (RTA). The results indicate that the band gap blue shift varies with the dielectric layers and annealing temperature. The SiO2 capping was successfully used with an InGaAs cladding layer to cause larger band tuning effect in the InGaAs/InP MQWs than the Si3N4 capping with an InGaAs cladding layer. On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.


1999 ◽  
Vol 4 (S1) ◽  
pp. 357-362
Author(s):  
C. Wetzel ◽  
T. Takeuchi ◽  
H. Amano ◽  
I. Akasaki

Identification of the electronic band structure in AlInGaN heterostructures is the key issue in high performance light emitter and switching devices. In device-typical GaInN/GaN multiple quantum well samples in a large set of variable composition a clear correspondence of transitions in photo- and electroreflection, as well as photoluminescence is found. The effective band offset across the GaN/GaInN/GaN piezoelectric heterointerface is identified and electric fields from 0.23 - 0.90 MV/cm are directly derived. In the bias voltage dependence a level splitting within the well is observed accompanied by the quantum confined Stark effect. We furthermore find direct correspondence of luminescence bands with reflectance features. This indicates the dominating role of piezoelectric fields in the bandstructure of such typical strained layers.


2005 ◽  
Vol 892 ◽  
Author(s):  
Yong-Seok Choi ◽  
Cedrik Meier ◽  
Rajat Sharma ◽  
Kevin Hennessy ◽  
Elaine D. Haberer ◽  
...  

AbstractWe have investigated the design parameters for high-Q photonic-crystal (PC) bandgap modes in the emission wavelengths of InGaN/GaN multiple quantum wells. We demonstrate experimental schemes to realize 2D triangular-lattice PC membrane structures, which is essential to obtain photonic bandgap (PBG) modes, and the optical properties of L7 membrane nanocavities that consist of seven missing holes in the Γ-K direction. L7 cavities show pronounced resonances with Q factors of 300 to 800 in the PBG as well as the enhancement of light extraction of the broad InGaN/GaN multiple-quantum-well emission by the 2D PBG.


1999 ◽  
Vol 607 ◽  
Author(s):  
F. Szmulowicz ◽  
A. Shen ◽  
H. C. Liu ◽  
G. J. Brown ◽  
Z. R. Wasilewski ◽  
...  

AbstractThis paper describes a study of the photoresponse of long-wavelength (LWIR) and mid-infrared (MWIR) p-type GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) as a function of temperature and QWIP parameters. Using an 8x8 envelope-function model (EFA), we designed and calculated the optical absorption of several bound-to-continuum (BC) structures, with the optimum designs corresponding to the second light hole level (LH2) coincident with the top of the well. For the temperature-dependent study, one non-optimized LWIR and one optimized MWIR samples were grown by MBE and their photoresponse and absorption characteristics measured to test the theory. The theory shows that the placement of the LH2 resonance at the top of the well for the optimized sample and the presence of light-hole-like quasi-bound states within the heavy-hole continuum for the nonoptimized sample account for their markedly different thermal and polarization characteristics. In particular, the theory predicts that, for the LWIR sample, the LH-like quasi-bound states should lead to an increased Ppolarized photoresponse as a function of temperature. Our temperature dependent photoresponse measurements corroborate most of the theoretical findings with respect to the long-wavelength threshold, shape, and polarization and temperature dependence of the spectra.


2000 ◽  
Vol 639 ◽  
Author(s):  
E.M. Goldys ◽  
M. Godlewski ◽  
M.R. Phillips ◽  
A.A. Toropov

ABSTRACTWe have examined multiple quantum well AlGaN/GaN structures with several quantum wells of varying widths. The structures had strain-free quantum wells and strained barriers. Strong piezoelectric fields in these structures led to a large red shift of the PL emission energies and long decay times were also observed. While the peak energies could be modelled using the effective mass approximation, the calculated free exciton radiative lifetimes were much shorter than those observed in experiments, indicating an alternative recombination mechanism, tentatively attributed to localised excitons. Cathodoluminescence depth profiling revealed an unusually small penetration range of electrons suggesting that electron-hole pairs preferentially remain within the multiple quantum well region due to the existing electric fields. Spatial fluctuations of the cathodoluminescence intensity were also observed.


2003 ◽  
Vol 0 (5) ◽  
pp. 1484-1487 ◽  
Author(s):  
N. C. Nielsen ◽  
J. Kuhl ◽  
M. Schaarschmidt ◽  
J. Förstner ◽  
A. Knorr ◽  
...  

1998 ◽  
Vol 537 ◽  
Author(s):  
C. Wetzel ◽  
T. Takeuchi ◽  
H. Amano ◽  
I. Akasaki

AbstractIdentification of the electronic band structure in AlInGaN heterostructures is the key issue in high performance light emitter and switching devices. In device-typical GaInN/GaN multiple quantum well samples in a large set of variable composition a clear correspondence of transitions in photo- and electroreflection, as well as photoluminescence is found. The effective band offset across the GaN/GaInN/GaN piezoelectric heterointerface is identified and electric fields from 0.23 - 0.90 MV/cm are directly derived. In the bias voltage dependence a level splitting within the well is observed accompanied by the quantum confined Stark effect. We furthermore find direct correspondence of luminescence bands with reflectance features. This indicates the dominating role of piezoelectric fields in the bandstructure of such typical strained layers.


Sign in / Sign up

Export Citation Format

Share Document