scholarly journals Energy evolution in many-particle quantum hydrodynamics of spinning plasmas

2016 ◽  
Vol 30 (04) ◽  
pp. 1650023
Author(s):  
Mariya Iv. Trukhanova

In this paper, we develop a quantum hydrodynamics (QHD) method for the research of the quantum evolution of a system of spinning particles. We derived the fundamental equation for charged and neutral spinning particles — the energy evolution equation from the many-particle microscopic Schrödinger equation with a spin–spin and Coulomb modified Hamiltonian. We derive the spin contributions to the energy evolution equation, thermal energy and thermal energy current.

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
David Pfau ◽  
James S. Spencer ◽  
Alexander G. D. G. Matthews ◽  
W. M. C. Foulkes

Author(s):  
Alisa Bokulich

Traditionally \1 is used to stand for both the mathematical wavefunction (the representation) and the quantum state (thing in the world). This elision has been elevated to a metaphysical thesis by advocates of wavefunction realism. The aim of Chapter 10 is to challenge the hegemony of the wavefunction by calling attention to a littleknown formulation of quantum theory that does not make use of the wavefunction in representing the quantum state. This approach, called Lagrangian quantum hydrodynamics (LQH), is a full alternative formulation, not an approximation scheme. A consideration of alternative formalisms is essential for any realist project that attempts to read the ontology of a theory off the mathematical formalism. The chapter shows that LQH falsifies the claim that one must represent the many-body quantum state as living in 3n-dimensional configuration space. When exploring quantum realism, regaining sight of the proverbial forest of quantum representations beyond the \1 is just the beginning.


1997 ◽  
Vol 08 (04) ◽  
pp. 705-716 ◽  
Author(s):  
Bruce M. Boghosian ◽  
Washington Taylor

A general class of discrete unitary models are described whose behavior in the continuum limit corresponds to a many-body Schrödinger equation. On a quantum computer, these models could be used to simulate quantum many-body systems with an exponential speedup over analogous simulations on classical computers. On a classical computer, these models give an explicitly unitary and local prescription for discretizing the Schrödinger equation. It is shown that models of this type can be constructed for an arbitrary number of particles moving in an arbitrary number of dimensions with an arbitrary interparticle interaction.


Author(s):  
Piero Colonna ◽  
Emiliano Casati ◽  
Carsten Trapp ◽  
Tiemo Mathijssen ◽  
Jaakko Larjola ◽  
...  

The cumulative global capacity of organic Rankine cycle (ORC) power systems for the conversion of renewable and waste thermal energy is undergoing a rapid growth and is estimated to be approx. 2000 MWe considering only installations that went into operation after 1995. The potential for the conversion of the thermal power coming from liquid-dominated geothermal reservoirs, waste heat from primary engines or industrial processes, biomass combustion, and concentrated solar radiation into electricity is arguably enormous. ORC technology is possibly the most flexible in terms of capacity and temperature level and is currently often the only applicable technology for the conversion of external thermal energy sources. In addition, ORC power systems are suitable for the cogeneration of heating and/or cooling, another advantage in the framework of distributed power generation. Related research and development is therefore very lively. These considerations motivated the effort documented in this article, aimed at providing consistent information about the evolution, state, and future of this power conversion technology. First, basic theoretical elements on the thermodynamic cycle, working fluid, and design aspects are illustrated, together with an evaluation of the advantages and disadvantages in comparison to competing technologies. An overview of the long history of the development of ORC power systems follows, in order to place the more recent evolution into perspective. Then, a compendium of the many aspects of the state of the art is illustrated: the solutions currently adopted in commercial plants and the main-stream applications, including information about exemplary installations. A classification and terminology for ORC power plants are proposed. An outlook on the many research and development activities is provided, whereby information on new high-impact applications, such as automotive heat recovery is included. Possible directions of future developments are highlighted, ranging from efforts targeting volume-produced stationary and mobile mini-ORC systems with a power output of few kWe, up to large MWe base-load ORC plants.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 498
Author(s):  
Mariya Iv. Trukhanova ◽  
Yuri N. Obukhov

We develop a many-particle quantum-hydrodynamical model of fermion matter interacting with the external classical electromagnetic and gravitational/inertial and torsion fields. The consistent hydrodynamical formulation is constructed for the many-particle quantum system of Dirac fermions on the basis of the nonrelativistic Pauli-like equation obtained via the Foldy–Wouthuysen transformation. With the help of the Madelung decomposition approach, the explicit relations between the microscopic and macroscopic fluid variables are derived. The closed system of equations of quantum hydrodynamics encompasses the continuity equation, and the dynamical equations of the momentum balance and the spin density evolution. The possible experimental manifestations of the torsion in the dynamics of spin waves is discussed.


Sign in / Sign up

Export Citation Format

Share Document