The manipulation of the physical properties of some typical zinc-blende semiconductors by the electric field

2019 ◽  
Vol 33 (09) ◽  
pp. 1950110
Author(s):  
Yan-Li Li ◽  
Hao-Yu Dong ◽  
San-Lue Hu ◽  
Jia-Ning Li ◽  
Meng-Qi Liu ◽  
...  

In this research, we regulate the band gaps of some typical zinc-blende semiconductors by applying an external electric field. The variation of the geometric structures and the band gaps of AlP, AlAs, AlSb, GaP, GaAs, ZnO, ZnSe and ZnTe have been studied. We also calculated the stability, density of states, band structures and the charge distribution by the first-principles method based on density functional theory. Moreover, the giant Stark effect coefficients have also been analyzed in detail. From our results, we find that the magnitude and the direction of the electric field has a significant regulation effect on the band gaps and the electronic structures of AlP, AlAs, AlSb, GaP, GaAs, ZnO, ZnSe and ZnTe, which induces a phase transition from semiconductor to metal beyond a certain electric field. Therefore, we can regulate the physical properties of this type of semiconductors by tuning the magnitude and the direction of the electric field. This is very important for practical applications in nanoelectronic devices.

2017 ◽  
Vol 31 (33) ◽  
pp. 1750310 ◽  
Author(s):  
Jia-Ning Li ◽  
San-Lue Hu ◽  
Hao-Yu Dong ◽  
Xiao-Ying Xu ◽  
Jia-Fu Wang ◽  
...  

Under the tuning of an external electric field, the variation of the geometric structures and the band gaps of the wurtzite semiconductors ZnS, ZnO, BeO, AlN, SiC and GaN have been investigated by the first-principles method based on density functional theory. The stability, density of states, band structures and the charge distribution have been analyzed under the electric field along (001) and (00[Formula: see text]) directions. Furthermore, the corresponding results have been compared without the electric field. According to our calculation, we find that the magnitude and the direction of the electric field have a great influence on the electronic structures of the wurtzite materials we mentioned above, which induce a phase transition from semiconductor to metal under a certain electric field. Therefore, we can regulate their physical properties of this type of semiconductor materials by tuning the magnitude and the direction of the electric field.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


2019 ◽  
Vol 13 (4) ◽  
pp. 357-364
Author(s):  
R. Majidi ◽  
H. Eftekhari ◽  
H. Bayat ◽  
Kh. Rahmani ◽  
A. M. Khairogli

Abstract The effect of BN nanodots with hexagonal shape on the electronic properties of α- and β-graphyne sheets is investigated. The structural and electronic properties of α- and β-graphyne sheets doped with BN nanodots are studied by using density functional theory. The cohesive energies of the systems indicate all considered structures are thermally stable. It is found that hexagonal BN nanodots can effectively open the band gap in α- and β-graphyne sheets. It means BN nanodots change α- and β-graphyne sheets from semimetal to semiconductor. The BN nanodots with different sizes are considered. It is found that band gaps of the studied α- and β-graphyne sheets doped with BN nanodots increase with the increase in the size of BN nanodots. Hence, α- and β-graphyne sheets doped with BN nanodots are promising materials for use in nanoelectronic devices based on semiconductors.


2013 ◽  
Vol 873 ◽  
pp. 114-120 ◽  
Author(s):  
Zhi Wen Wang ◽  
Xin Jun Guo ◽  
Hong Xia Zhang ◽  
Li Li

First-principles calculations within the density functional theory (DFT) have been carried out to study the interaction of hydrogen molecule with Fe-doped Mg (0001) surfaces. First we have calculated the stability of the Fe atom on the Mg surface, On the basis of the energetic criteria, Fe atom prefer to substitute one of the Mg atoms from the second layer. In the second step, we have studied the interaction between hydrogen molecule and the Fe-doped Mg (0001) surface. The results show that for Fe atoms doped Mg (0001) surface in the second layer, enhances the chemisorption interaction between H2molecule and Fe atom, but also benefits H atom diffusion into Mg bulk with relatively more diffusion paths compared with that of clean Mg surface. Charge density difference plots provided some ideas about why certain alloying elements on the surface reduce the energy barrier of H2molecule dissociation on Fe-doped Mg (0001) surface. We can see that Fe as catalyst for the hydrogenation/dehydrogenation of Mg alloy samples and provide more dissociation path for H2molecule and diffusion paths for H atom, The present results not only beneficial for clarify the experimentally observed fast hydrogenation kinetics for Fe-capped Mg materials but also help to design new types of hydrogen storage materials for practical applications in the auto industry.


2014 ◽  
Vol 92 (9) ◽  
pp. 1058-1061 ◽  
Author(s):  
Anurag Srivastava ◽  
Bhoopendra Dhar Diwan

The present paper discusses the density functional theory based stability analysis of zirconium nitride and hafnium nitride in its rocksalt (B1), CsCl (B2), and zinc blende (B3) type phases. The ground state total energy calculation approach of the system has been used through the generalized gradient approximation parameterized with revised Perdew–Burke–Ernzerhof as exchange correlation functional. The present theoretical analysis confirms the stability trend of phases from most stable to less stable as B1 → B2 → B3. The study also reports the analysis of elastic properties of these nitrides in its most stable B1-type phase.


2017 ◽  
Vol 19 (48) ◽  
pp. 32626-32635 ◽  
Author(s):  
Saurin H. Rawal ◽  
William C. McKee ◽  
Ye Xu

The stability of molecular superoxide species can be materially affected by the presence of an interfacial electric field and solvent molecules, which needs to be taken into account in the first-principles modeling of oxygen reduction by metals and other related electrode reactions.


2016 ◽  
Vol 27 (03) ◽  
pp. 1650035 ◽  
Author(s):  
Rezek Mohammad ◽  
Şenay Katırcıoğlu

Structural stability and electronic properties of GaAs[Formula: see text]P[Formula: see text] ([Formula: see text]) nanowires (NWs) in zinc-blende (ZB) ([Formula: see text] diameter [Formula: see text][Formula: see text]Å) and wurtzite (WZ) ([Formula: see text][Formula: see text]Å) phases are investigated by first-principles calculations based on density functional theory (DFT). GaAs ([Formula: see text]) and GaP ([Formula: see text]) compound NWs in WZ phase are found energetically more stable than in ZB structural ones. In the case of GaAs[Formula: see text]P[Formula: see text] alloy NWs, the energetically favorable phase is found size and composition dependent. All the presented NWs have semiconductor characteristics. The quantum size effect is clearly demonstrated for all GaAs[Formula: see text]P[Formula: see text] ([Formula: see text]) NWs. The band gaps of ZB and WZ structural GaAs compound NWs with [Formula: see text] diameter [Formula: see text][Formula: see text]Å and [Formula: see text][Formula: see text]Å, respectively are enlarged by the addition of concentrations of phosphorus for obtaining GaAs[Formula: see text]P[Formula: see text] NWs proportional to the x values around 0.25, 0.50 and 0.75.


Author(s):  
Ibrahim Isah ◽  
Mustapha Isah

The research investigates the stability, phase transition and structural parameters of zinc sulfide (Zinc blende, Rock salt and Wurtzite) using first-principle. The study employs generalized gradient approximation (GGA) within density functional theory (DFT) in which ultra-soft pseudopotential (Zn.pbe-van.UPFb and S.pbe-van_bm.UPFc ) were used for both zinc and sulfide respectively. Self-consistent calculation was made using cut-off energies of 26Ry (~350 eV) and 180 Ry (~2450eV) for the cut-off wave function within the convergence accuracy of ~1mRy with respect to total energy and 0.5kbar in case of pressure. The results obtained show that Wurtzite is more stable because it has lowest energy among the three structures, there is transition from zinc blende to rock salt and from Wurtzite to rock salt with transition pressures of 17.5GPa and 16.9GPa respectively and all the three polymorphs are semi-conductors due to their band gap.


2018 ◽  
Vol 916 ◽  
pp. 69-73
Author(s):  
Sena Güler Özkapı ◽  
Barış Özkapı ◽  
Seyfettin Dalgıç

In this work, we have investigated electronic structures of pure and doped (with Cr and Mn atoms, separately) BN nanowires along [001] direction with zinc blende phase by means of density functional theory calculations. Our results show that the substitution doping of nanowires by Cr and Mn atoms decrases the band gaps of the all BN nanowires. Also, spin polarized calculations exhibit that the density of states (DOS) for spin up and spin down electrons are antisymmetric structure for both Cr and Mn doped BN nanowires. All these show that doped BN nanowire systems have potential applications in electronics and spintronics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2752
Author(s):  
Vladimir Bystrov ◽  
Ekaterina Paramonova ◽  
Leon Avakyan ◽  
José Coutinho ◽  
Natalia Bulina

Simulation and computer studies of the structural and physical properties of hydroxyapatite (HAP) with different defects are presented in this review. HAP is a well-known material that is actively used in various fields of medicine, nanotechnology, and photocatalytic processes. However, all HAP samples have various defects and are still insufficiently studied. First of all, oxygen and OH group vacancies are important defects in HAP, which significantly affect its properties. The properties of HAP are also influenced by various substitutions of atoms in the HAP crystal lattice. The results of calculations by modern density functional theory methods of HAP structures with these different defects, primarily with oxygen and hydroxyl vacancies are analyzed in this review. The results obtained show that during the structural optimization of HAP with various defects, both the parameters of the crystallographic cells of the HAP change and the entire band structure of the HAP changes (changes in the band gap). This affects the electronic, optical, and elastic properties of HAP. The review considers the results of modeling and calculation of HAP containing various defects, the applied calculation methods, and the features of the effect of these defects on the properties of HAP, which is important for many practical applications.


Sign in / Sign up

Export Citation Format

Share Document