The tuning effect of the electric field on the physical properties of some typical wurtzite semiconductors

2017 ◽  
Vol 31 (33) ◽  
pp. 1750310 ◽  
Author(s):  
Jia-Ning Li ◽  
San-Lue Hu ◽  
Hao-Yu Dong ◽  
Xiao-Ying Xu ◽  
Jia-Fu Wang ◽  
...  

Under the tuning of an external electric field, the variation of the geometric structures and the band gaps of the wurtzite semiconductors ZnS, ZnO, BeO, AlN, SiC and GaN have been investigated by the first-principles method based on density functional theory. The stability, density of states, band structures and the charge distribution have been analyzed under the electric field along (001) and (00[Formula: see text]) directions. Furthermore, the corresponding results have been compared without the electric field. According to our calculation, we find that the magnitude and the direction of the electric field have a great influence on the electronic structures of the wurtzite materials we mentioned above, which induce a phase transition from semiconductor to metal under a certain electric field. Therefore, we can regulate their physical properties of this type of semiconductor materials by tuning the magnitude and the direction of the electric field.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1805
Author(s):  
Zhilue Wang ◽  
Shoujiang Qu ◽  
Hongping Xiang ◽  
Zhangzhen He ◽  
Jun Shen

The stability, physical properties, and electronic structures of Cr(NCN)2 were studied using density functional theory with explicit electronic correlation (GGA+U). The calculated results indicate that Cr(NCN)2 is a ferromagnetic and half-metal, both thermodynamically and elastically stable. A comparative study on the electronic structures of Cr(NCN)2 and CrO2 shows that the Cr atoms in both compounds are in one crystallographically equivalent site, with an ideal 4+ valence state. In CrO2, the Cr atoms at the corner and center sites have different magnetic moments and orbital occupancies, moreover, there is a large difference between the intra- (12.1 meV) and inter-chain (31.2 meV) magnetic couplings, which is significantly weakened by C atoms in Cr(NCN)2.


2015 ◽  
Vol 817 ◽  
pp. 690-697
Author(s):  
Yong Hua Duan ◽  
Yong Sun ◽  
Ming Jun Peng

The stability and electronic properties of Mg2Pb (100), (110) and (111) surfaces were investigated by using the first-principles density functional theory (DFT) method. The calculated results showed that the orders of relaxation and surface energy are |∆d15(111)| < |∆d15(110)| < |∆d15(100)| andEsurf(100) >Esurf(110) >Esurf(111), respectively, indicating that Mg2Pb (111) surface is the most stable among these three low index surfaces. The Density of states (DOS) of Mg2Pb surfaces are mainly dominated by Pb-6, Mg-3s, and 2porbitals in the band ranging from-5 eV to Fermi level. It can be further obtained from results of the DOS and the charge density difference that Mg2Pb (111) surface is more stable than Mg2Pb (100) and (110) surfaces. The Mg2Pb (111) surface is the thermodynamically most favorable over all of the range of.


2017 ◽  
Vol 19 (48) ◽  
pp. 32626-32635 ◽  
Author(s):  
Saurin H. Rawal ◽  
William C. McKee ◽  
Ye Xu

The stability of molecular superoxide species can be materially affected by the presence of an interfacial electric field and solvent molecules, which needs to be taken into account in the first-principles modeling of oxygen reduction by metals and other related electrode reactions.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550037 ◽  
Author(s):  
DIAN-NA ZHANG ◽  
LI ZHAO ◽  
JIA-FU WANG ◽  
YAN-LI LI

The electronic structures and the stability of the low-index surface (001), (011) and (111) for MgO were investigated by first-principles method based on density functional theory (DFT). We analyzed the stability of the MgO slab in equilibrium with an arbitrary oxygen environment. The density of states (DOS) and the band structures of MgO slabs were calculated and compared with those of the bulk MgO . Our calculation results reveal that the stabilities of the surface vary with the change of O chemical potential. In addition, the (001) and (011) surfaces are semiconductors, which are similar to that of the bulk MgO . However, the MgO (111) surface exhibits metallic property due to the effect of the surface states, which is different from that of the bulk MgO .


2019 ◽  
Vol 33 (09) ◽  
pp. 1950110
Author(s):  
Yan-Li Li ◽  
Hao-Yu Dong ◽  
San-Lue Hu ◽  
Jia-Ning Li ◽  
Meng-Qi Liu ◽  
...  

In this research, we regulate the band gaps of some typical zinc-blende semiconductors by applying an external electric field. The variation of the geometric structures and the band gaps of AlP, AlAs, AlSb, GaP, GaAs, ZnO, ZnSe and ZnTe have been studied. We also calculated the stability, density of states, band structures and the charge distribution by the first-principles method based on density functional theory. Moreover, the giant Stark effect coefficients have also been analyzed in detail. From our results, we find that the magnitude and the direction of the electric field has a significant regulation effect on the band gaps and the electronic structures of AlP, AlAs, AlSb, GaP, GaAs, ZnO, ZnSe and ZnTe, which induces a phase transition from semiconductor to metal beyond a certain electric field. Therefore, we can regulate the physical properties of this type of semiconductors by tuning the magnitude and the direction of the electric field. This is very important for practical applications in nanoelectronic devices.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


2010 ◽  
Vol 663-665 ◽  
pp. 519-522
Author(s):  
Cai Juan Xia ◽  
Han Chen Liu ◽  
Ying Tang Zhang

By Applying Nonequilibrium Green’s Function Formalism Combined First-Principles Density Functional Theory, we Investigate the Electronic Transport Properties of Thiophene and Furan Molecules with Different Quantum Length. the Influence of HOMO-LUMO Gaps and the Spatial Distributions of Molecular Orbitals on the Electronic Transport through the Molecular Device Are Discussed in Detail. the Results Show that the Transport Behaviors Are Determined by the Distinct Electronic Structures of the Molecular Compounds. the Length Dependence of Molecular Conductance Exhibits its Diversity for Different Molecules.


2010 ◽  
Vol 25 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
Pengxian Lu ◽  
Zigang Shen ◽  
Xing Hu

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.


Sign in / Sign up

Export Citation Format

Share Document