Transport properties of an organic material under a temperature gradient

2019 ◽  
Vol 33 (19) ◽  
pp. 1950215 ◽  
Author(s):  
Lijuan Tang ◽  
Xinting Zhang ◽  
Baoying Yan ◽  
Lei Liu ◽  
Changhu Wang ◽  
...  

Thermoelectric properties of organic materials have attracted much attention for the potential application in clean energy sources. In this work, we use the master equation method to calculate transport properties of the organic material when there is a temperature gradient in the material. The themoelectric property is analyzed with our model under different temperatures and different disorder strengths. It will be helpful to understand the thermoelectric property of organic materials and make good use of the heat energy.

2020 ◽  
Vol 1 (2) ◽  
pp. 189-193
Author(s):  
Aisha Naiga ◽  
Loyola Rwabose Karobwa

Over 90% of Uganda's power is generated from renewable sources. Standardised Implementation Agreements and Power Purchase Agreements create a long-term relationship between Generating Companies and the state-owned off-taker guaranteed by Government. The COVID-19 pandemic and measures to curb the spread of the virus have triggered the scrutiny and application of force majeure (FM) clauses in these agreements. This article reviews the FM clauses and considers their relevance. The authors submit that FM clauses are a useful commercial tool for achieving energy justice by ensuring the continuity of the project, despite the dire effects of the pandemic. Proposals are made for practical considerations for a post-COVID-19 future which provides the continued pursuit of policy goals of promoting renewable energy sources and increasing access to clean energy, thus accelerating just energy transitions.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Firman L. Sahwan

Organic materials that are generally used as raw material for organic fertilizer granules (POG) is a natural organic material that has been degrade, smooth and dry. One of the main raw materials are always used with a very high percentage of usage, is manure. Manure potential in Indonesia is very high, amounting to 113.6 million tons per year, or 64.7 million tons per year to the island of Java. From this amount, it will be generated numbers POG production potential of 17.5 million tons per year (total Indonesia) or 9.9 million tons per year for the island of Java. While the realistic POG production predictions figures made from raw manure is 2.5 million tons annually, a figure that has been unable to meet the number requirement of POG greater than 4 million tons per year. Therefore, in producing POG, it should be to maximize the using of the potential of other organic materials so that the use of manure can be saved. With the use of a small amount of manure (maximum 30% for cow manure), it would be useful also to avoid the production of POG with high Fe content.keywods: organic material, manure, granule organic fertilizer


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2151
Author(s):  
Feras Alasali ◽  
Husam Foudeh ◽  
Esraa Mousa Ali ◽  
Khaled Nusair ◽  
William Holderbaum

More and more households are using renewable energy sources, and this will continue as the world moves towards a clean energy future and new patterns in demands for electricity. This creates significant novel challenges for Distribution Network Operators (DNOs) such as volatile net demand behavior and predicting Low Voltage (LV) demand. There is a lack of understanding of modern LV networks’ demand and renewable energy sources behavior. This article starts with an investigation into the unique characteristics of householder demand behavior in Jordan, connected to Photovoltaics (PV) systems. Previous studies have focused mostly on forecasting LV level demand without considering renewable energy sources, disaggregation demand and the weather conditions at the LV level. In this study, we provide detailed LV demand analysis and a variety of forecasting methods in terms of a probabilistic, new optimization learning algorithm called the Golden Ratio Optimization Method (GROM) for an Artificial Neural Network (ANN) model for rolling and point forecasting. Short-term forecasting models have been designed and developed to generate future scenarios for different disaggregation demand levels from households, small cities, net demands and PV system output. The results show that the volatile behavior of LV networks connected to the PV system creates substantial forecasting challenges. The mean absolute percentage error (MAPE) for the ANN-GROM model improved by 41.2% for household demand forecast compared to the traditional ANN model.


Author(s):  
D Nurba ◽  
M Yasar ◽  
Mustaqimah ◽  
R Fadhil ◽  
S P Sari ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
pp. 03
Author(s):  
E. Avallone ◽  
A. I. Sato ◽  
V. L. Scalon ◽  
A. Padilha

The need of renewable energy sources due to climate change and thus the search for clean energy sources, justify the growing investment on new types of solar collectors. The research has contributed to this expansion in the scope of solar concentrator collectors, with the efficiency as the main goal. Many works have been developed in order to optimize the thermal stratification of the fluid inside the tubes and heat reservoirs, as well as mathematical modeling considering the problem as transient heat flow as boundary condition. In this work is studied experimentally, the heating of the water by solar collector modified from the conventional evacuated tube, focusing on efficiency. With the help of CFD software, a theoretical analysis is done to visualize the phenomenon, assuming the same boundary conditions and geometric experimental problem. An important approach concerns the physical separation of the flows of both cold and hot water inside the evacuated tube. The system performance was analyzed using experimental tests performed outdoors with sunlight.


2007 ◽  
Vol 56 (10) ◽  
pp. 37-44 ◽  
Author(s):  
I. Urban ◽  
D. Weichgrebe ◽  
K.-H. Rosenwinkel

The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO2 emission. With the anaerobic treatment of municipal wastewater, not only can the CO2 emission be reduced but “clean” energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO2 emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates.


2013 ◽  
Vol 345 ◽  
pp. 17-21
Author(s):  
Ting Jie Yang

This article presents the research and development of all electric vehicle (EV) in Department of HumanRobotics Saitama Institute of Technology, Japan .Electric mobile systems developed in our laboratory include a converted electric automobile,electric wheelchair and personal mobile robot.These mobile system s contribute to realize clean transportation since energy sources an d devices from all vehicles,i.e.,batteries and electric motors,does not deteriorate the environment.To drive motors for vehicle traveling,robotic technologies were applied.


2015 ◽  
Vol 787 ◽  
pp. 893-898
Author(s):  
Suneetha Racharla ◽  
K. Rajan ◽  
K.R. Senthil Kumar

Recently renewable energy sources have gained much attention as a clean energy. But the main problem occurs with the varying nature with the day and season. Aim of this paper is to conserve the energy, of the natural resources. For solar energy resource, the output induced in the photovoltaic (PV) modules depends on solar radiation and temperature of the solar cells. To maximize the efficiency of the system it is necessary to track the path of sun in order to keep the panel perpendicular to the sun. This paper proposes the design and construction of a microcontroller-based solar panel tracking system. The fuzzy controller aims at maximizing the efficiency of PV panel by focusing the sunlight to incident perpendicularly to the panel. The system consists of a PV panel which can be operated with the help of DC motor, four LED sensors placed in different positions and a fuzzy controller which takes the input from sensors and gives output speed to motor. A prototype is fabricated to test the results and compared with the simulation results. The results show the improved performance by using a tracking system


2015 ◽  
Vol 22 (06) ◽  
pp. 1550073 ◽  
Author(s):  
HUI LIU ◽  
CHANGSHENG PENG ◽  
MIN DAI ◽  
QINGBAO GU ◽  
SHAOXIAN SONG

The crystallization of calcium carbonate ( CaCO 3) in soil controlled by natural organic material was considered a very important reason to enhance the property of ancient Chinese organic Sanhetu (COS), but how the organic material affected the crystallization of CaCO 3 in COS is still unclear. In this paper, a natural organic material (sticky rice, SR) and a synthetic organic material (anionic polyacrylamide, APAM) were selected as additives to investigate their effect on the crystallization of CaCO 3. The experimental results showed that the morphology and size of CaCO 3 crystals could be affected by the concentration of additives and reaction time, while only the size of CaCO 3 crystals could be affected by the concentration of reactant. Although the morphology and size of CaCO 3 crystals varied greatly with the variation of additive concentration, reactant concentration and reaction time, the polymorph of CaCO 3 crystals were always calcite, according to SEM/EDX, XRD and FTIR analyses. This study may help us to better understand the mechanism of the influence of organic materials on CaCO 3 crystallization and properties of COS.


2016 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
YUDI RINANTO ◽  
UMI FATMAWATI

<p class="5abstrak">The aim of this research is to identify the effectiveness of Local Isolate Bacteria from Boyolali (ILB) to decompose organic materials from wasted vegetable and slurry. The result of decomposition were compared to EM4 for control. The laboratory result indicates that Local isolate bacteria from Boyolali were more effective than EM4 to increase N (Nitrogen) content. The ability of Local isolate bacteria from Boyolali was better than EM4 in degrading organic materials of slurry, particularly, towards P (Phosphate). The best concentration of ILB decomposition is 30 %. Liquid fertilizer produced from Slurry with decomposition ILB 30% that applied towards cabbage  increased the weight of cabbage and the length of circumference by 0.5525 gram and 12.67 cm respectively. From the experimental results that it can be concluded that ILB has better capability in decomposing organic material than EM4. ILB has a good potential as <em>decomposter</em> to produces liquid organic fertilizer.</p><p class="5abstrak"> </p><strong>Keywords</strong>:     Local isolate, decomposter, EM4, Slurry, cabbage


Sign in / Sign up

Export Citation Format

Share Document