Rolling tuning microstructure and tensile properties of nano/microcrystalline 304 stainless steel

2019 ◽  
Vol 33 (28) ◽  
pp. 1950344 ◽  
Author(s):  
Yu Shi ◽  
Peiqing La ◽  
Yijun Han ◽  
Fuan Wei ◽  
Jie Sheng ◽  
...  

The effect of rolling parameters on microstructure and tensile properties of nanocrystalline/microcrystalline 304 stainless steel (SS) casted by the aluminothermic reaction was investigated in this work. It was found that majority of the nanocrystalline austenite of the 304 SS rolled at 700[Formula: see text]C and 900[Formula: see text]C grew up and transformed to sub-microcrystalline. While the nanocrystalline/microcrystalline structure still retained rolled at 900[Formula: see text]C with 40% deformation followed 600[Formula: see text]C with 70% thickness reduction, and microcrystalline austenite grains distributed evenly. The strength and ductility of the various rolled 304 SS were improved compared with the as-casted 304 SS steel. The steel rolled at 900[Formula: see text]C with 80% deformation exhibited a uniform elongation as large as 31.3%, which is almost the same ductility level of counterpart coarse-grained steel. The rolled steel at 700[Formula: see text]C with 80% deformation achieved the maximum tensile strength but the smallest elongation. The sample, two-step rolled at 900[Formula: see text]C with 40% thickness reduction and then 600[Formula: see text]C with 70% thickness reduction, yielded the satisfactory combination of strength and ductility. The yield strength and elongation were appropriate 767 MPa and 22.8%, respectively, which resulted from the optimized nanocrystalline/microcrystalline structure and distribution.

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2613
Author(s):  
Qingsong Pan ◽  
Song Guo ◽  
Fang Cui ◽  
Lijun Jing ◽  
Lei Lu

Materials with designed gradient nanograins exhibit unprecedented mechanical properties, such as superior strength and ductility. In this study, a heterostructured 304 stainless steel with solely gradient dislocation structure (GDS) in micron-sized grains produced by cyclic-torsion processing was demonstrated to exhibit a substantially improved yield strength with slightly reduced uniform elongation, compared with its coarse grained counterparts. Microstructural observations reveal that multiple deformation mechanisms, associated with the formation of dense dislocation patterns, deformation twins and martensitic phase, are activated upon straining and contribute to the delocalized plastic deformation and the superior mechanical performance of the GDS 304 stainless steel.


1973 ◽  
Vol 95 (3) ◽  
pp. 182-185 ◽  
Author(s):  
J. M. Steichen

The high strain rate tensile properties of solution annealed Type 304 stainless steel have been determined experimentally. Tests were performed at strain rates ranging from 3 × 10−5 to 1 × 102 in./in./sec at temperatures from 600 to 1600 deg F. At temperatures to 1000 deg F, the strength and ductility are largely insensitive to variations in strain rate, whereas at temperatures from 1200 to 1600 deg F, significant increases in both strength and ductility are observed with increasing strain rate.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781401985099 ◽  
Author(s):  
H Abdelrahim ◽  
HB Mohamed ◽  
Peiqing La ◽  
Wei Fuma ◽  
Fuling Ma ◽  
...  

304 stainless steels were prepared by aluminothermic reaction method; first steels are annealed at 1000°C and then rolled at 700°C for different deformation. The microstructures evolution and mechanical properties were distinguished in details. It was found that the steel contains nanocrystalline/submicrocrystalline/microcrystalline austenite and submicrocrystalline ferrite. After rolling to a thickness reduction of 30%, 50%, and 70%, the mechanical properties of the rolled steels were substantially increased, as the deformation increased from 30% to 50%, the tensile strength increased from 650 to 1110 MPa, the yield strength increased from 400 to 665 MPa, and the elongation increased from 8% to 8.5%.


Author(s):  
Gang Ma ◽  
Xiang Ling

High tensile weld residual stress is an important factor contributing to stress corrosion cracking (SCC). Ultrasonic impact treatment (UIT) can produce compressive stresses on the surface of welded joints that negate the tensile stresses to enhance the SCC resistance of welded joints. In the present work, X-ray diffraction method was used to obtain the distribution of residual stress induced by UIT. The results showed that UIT could cause a large compressive residual stress up to 325.9MPa on the surface of the material. A 3D finite element model was established to simulate the UIT process by using a finite element software ABAQUS. The residual stress distribution of the AISI 304 stainless steel induced by UIT was predicted by finite element analysis. In order to demonstrate the improvement of the SCC resistance of the welded joints, the specimens were immersed in boiling 42% magnesium chloride solution during SCC testing, and untreated specimen cracked after immersion for 23 hours. In contrast, treated specimens with different coverage were tested for 1000 hours without visible stress corrosion cracks. The microstructure observation results revealed that a hardened layer was formed on the surface and the initial coarse-grained structure in the surface was refined into ultrafine grains. The above results indicate that UIT is an effective approach for protecting weldments against SCC.


2013 ◽  
Vol 50 ◽  
pp. 581-586 ◽  
Author(s):  
Kai Guan ◽  
Zemin Wang ◽  
Ming Gao ◽  
Xiangyou Li ◽  
Xiaoyan Zeng

Sign in / Sign up

Export Citation Format

Share Document