Acoustic wave confinement in two-dimensional phononic crystal with multiple nested resonators

2019 ◽  
Vol 33 (36) ◽  
pp. 1950450
Author(s):  
Xiao-Peng Wang ◽  
Hui Sun ◽  
Tian-Ning Chen ◽  
Xing-Guo Wang

In this research, a novel phononic crystal (PC) is investigated theoretically to enhance acoustic pressure confinement. It consists of multiple nested resonators based on a tapered configuration. Nested phononic crystal resonator (NPCR) can enhance the acoustic pressure amplification at resonant cavity to a great degree better than the traditional one with same dimensions. The resonant frequency of NPCR is mainly located within outermost phononic crystal resonator’s (PCR) band gap. Meanwhile, it does not move significantly to high frequency with the addition of inner tapered resonators. The enhanced acoustic pressure resonant amplification is attributed to the improvement of the confinement mode owing to the nested structure working as a taper. Then effects of geometrical dimensions of inner PCRs on acoustic confinement are studied. It shows that resonant frequency and resonant acoustic pressure can be affected by the geometric parameters. NPCR has stronger acoustic confinement effects, which are conducive to improve acoustic sensing sensitivity, acoustic signal frequency resolution and acoustic energy harvesting efficiency.

Author(s):  
R Hernandez ◽  
S Jung ◽  
K I Matveev

Energy of high-amplitude sound that often appears in acoustic resonators with mean flow can be harnessed and converted into electricity for powering sensors and other devices. In this study, tests were conducted in a simple setup consisting of a pipe with a pair of baffles and a piezoelement. Tonal sound, corresponding to the second acoustic mode of the resonator, was excited due to vortex shedding/impinging on baffles in the presence of mean flow. Generated sound energy was partially converted into electrical energy by a piezoelement. About 0.55 mW of electric power was produced on a resistive electric load at acoustic pressure amplitudes in the pipe about 170 Pa and mean flow velocity 2.6 m/s.


2009 ◽  
Vol 95 (1) ◽  
pp. 013506 ◽  
Author(s):  
Liang-Yu Wu ◽  
Lien-Wen Chen ◽  
Chia-Ming Liu

Author(s):  
Bin Li ◽  
Andrew J. Laviage ◽  
Jeong Ho You ◽  
Yong-Joe Kim

Although there have been significant efforts in harvesting environmental energy, our environment is still full of wasted and unused energy. As clean, ubiquitous and sustainable energy source, acoustic energy is one of the wasted energies and is abundant in our life. Therefore, it is of great interest to investigate acoustic energy harvesting mechanism as an alternative to existing energy harvesters. In this study, in order to harvest acoustic energy, piezoelectric cantilever beams are placed inside a quarter-wavelength straight-tube resonator. When the straight-tube resonator is excited by an incident wave at its acoustic eigenfrequency, an amplified acoustic resonant wave is developed inside the tube and drives the vibration motion of the piezoelectric beams. The piezoelectric beams have been designed to have the same structural eigenfrequency as the acoustic eigenfrequency of the tube resonators to maximize the amount of the harvested energy. With a single beam placed inside the tube resonators, the harvested voltage and power become the maximum near the tube open inlet where the acoustic pressure gradient is at the maximum. As the beam is moved to the tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams have been placed along the centerline of the tube resonators in order to increase the amount of harvested energy. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing piezoelectric beams near the closed tube end is not beneficial. The output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases.


2006 ◽  
Vol 88 (26) ◽  
pp. 263505 ◽  
Author(s):  
Manzhu Ke ◽  
Zhengyou Liu ◽  
Pei Pang ◽  
Wengang Wang ◽  
Zhigang Cheng ◽  
...  

1984 ◽  
Vol 98 (S9) ◽  
pp. 38-44 ◽  
Author(s):  
Richard S. Tyler

AbstractThis paper discusses the possibility of a localized peripheral origin of tinnitus. A working hypothesis is that tinnitus represents either aperiodic or periodic hyperactivity in the spontaneous activity of nerve fibers originating from a restricted place on the basilar membrane. The limited physiological data available support both hyperactive and hypoactive nerve fiber. Psychophysical data are not easy to interpret. Subjective descriptions and category scaling are too dependent on individual experience. Pitch matching can be reliable, but cannot distinguish between peripheral or central tinnitus. In one experiment we compared the masking of tinnitus to the masking of a pure tone, where the signal frequency and level were obtained from the tinnitus pitch and loudness matching. The results indicate that the broad tinnitus masking patterns are not typically due to the poor frequency resolution observed in sensorineural hearing loss. However, in a few subjects there was some correspondence between the shape of the tuning curve and the tinnitus masking pattern. In another study, we masked tinnitus with narrowband noises of different bandwidths. In some patients, there was a ‘critical bandwidth’ effect; wider masker bandwidths required greater overall sound pressures to mask the tinnitus. We conclude that the results from these studies taken together indicate that there are different types of tinnitus, some of which may have a localized peripheral origin.


2019 ◽  
Vol 3 (2) ◽  
pp. 50
Author(s):  
Hedwigis Harindra ◽  
Agung Bambang Setio Utomo ◽  
Ikhsan Setiawan

<span>Acoustic energy harvesting is one o</span><span lang="EN-US">f</span><span> many ways to harness </span><span lang="EN-US">acoustic </span><span>noises as wasted energy into use</span><span lang="EN-US">f</span><span>ul </span><span lang="EN-US">electical </span><span>energy using an acoustic </span><span>energy harvester. </span><span>Acoustic </span><span>energy harvester t</span><span lang="EN-US">h</span><span>at tested by Dimastya (2018) </span><span lang="EN-US">which is consisted of loudspeake</span><span>r </span><span lang="EN-US">and Helmholtz resonator, </span><span>produced two-peak spectrum. It is </span><span lang="EN-US">suspected</span><span> that the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">is due t</span><span>o </span><span lang="EN-US">Helmholtz</span><span> resonator resonance and the second peak </span><span lang="EN-US">comes</span><span lang="EN-US">from the resonance of the conversion </span><span>loudspeaker. </span><span lang="EN-US">This research is to experimentally confirm the guess of the origin of the first peak. The experiments are performed by adding silencer materials on the resonator inner wall which are expected to be able to reduce the height of first peak and to know </span><span>how </span><span lang="EN-US">they</span><span> a</span><span lang="EN-US">ff</span><span>ect t</span><span>he output electric power spectrum o</span><span lang="EN-US">f</span><span> t</span><span>he acoustic energy harvester. </span><span lang="EN-US">Three different silencer materials are used, those are</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam</span><span lang="EN-US">,</span><span> with</span><span lang="EN-US"> the same thickness of</span><span> 12 cm. </span><span lang="EN-US">The r</span><span>esult</span><span lang="EN-US">s</span><span> show that glasswool absorb</span><span lang="EN-US">s</span><span> sound more e</span><span lang="EN-US">ff</span><span>ectively than acostic </span><span lang="EN-US">f</span><span>oam and styro</span><span lang="EN-US">f</span><span>oam. The use o</span><span lang="EN-US">f</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam with 12 cm thickness lowered the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">by</span><span> 90% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,5 mW), 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), and 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), respectively. </span><span lang="EN-US">Based on these results, it is concluded that the guess of the origin of the first peak is confirmed.</span>


2015 ◽  
Vol 713-715 ◽  
pp. 1031-1033
Author(s):  
Wei Jiang ◽  
Fang Yuan ◽  
Liu Qing Yang

This paper introduces the working principle and structure of direct digital frequency synthesizer. This paper select the technology of lookup table to design DDS because it has many advantages such as less consumption hardware resources, simple structure, output only small delay and so on. As a result, signal generator can produce many waveforms with good stability and high frequency resolution. Finally, test showed that the output wave of triangular signal frequency is greater than 1MHz and the highest sine wave frequency is 30MHz, the value of peak to peak is continuously adjustable in 50mV ~ 4V range. The result of study will provide theoretical guidance for the design of DDS.


2019 ◽  
Vol 28 (10) ◽  
pp. 105037 ◽  
Author(s):  
Masoud Rezaei ◽  
R Talebitooti ◽  
M I Friswell

Sign in / Sign up

Export Citation Format

Share Document