Performance of heat transfer in MHD mixed convection flow using nanofluids in the presence of viscous dissipation: Local non-similarity solution

2020 ◽  
Vol 34 (11) ◽  
pp. 2050101
Author(s):  
Aamir Hamid ◽  
Masood Khan ◽  
Alamdar Hussain

In this study, an investigation has been carried out to examine the effects of thermal radiation, heat generation/absorption, viscous dissipation and suction parameter on MHD flow of water-base nanofluid (Ag, Cu, Al2O3, CuO and TiO2). This study also focused on the mixed convective flow of water-base nanofluid due to a vertical permeable plate in the presence of convective boundary condition. Further, heat transfer has been inspected for water-base fluid influenced by heat generation/absorption and viscous dissipation. Moreover, the governing equations are reduced to nonlinear ordinary differential equations via Sparrow–Quack–Boerner local non-similarity method. These nonlinear ODEs are simulated numerically by means of Runge–Kutta–Fehlberg method (RKF-45). The impact of pertinent parameters on the dimensionless velocity, nanofluid temperature, skin friction and local Nusselt number are discussed and displayed. The results match with a special case of formerly available work. The present exploration exhibits that nanoparticle volume fraction increases the velocity and temperature of Cu-water nanofluid. It is also shown that magnetic parameter reduces the heat transfer rate.

CFD letters ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 12-28
Author(s):  
Rahimah Mahat ◽  
Sharidan Shafie ◽  
Fatihhi Januddi

Research on the nanofluid becomes trending amongst researchers especially in the industrial and engineering field due to its important and extensive applications. Therefore, the present study aims to investigate numerically the impact of viscous dissipation conducted by sodium carboxymethyl cellulose (CMC-water) nanofluid containing copper nanoparticles at room temperature with convective boundary conditions (CBC). The Tiwari and Das model was selected in this study and the transformed boundary layer equations for momentum and energy subject to the appropriate boundary conditions were numerically solved by employing numerical scheme, namely the Keller-box method. The results were analysed in detail and presented graphically for the velocity, temperature, skin friction coefficient as well as the heat transfer coefficient. The obtained results indicated that there was no significant effect for velocity and temperature profiles when values of Eckert number increased. However, it is significant for skin friction and heat transfer coefficient profiles. In the meantime, the thermal conductivity of the fluid may increase by increasing the concentration of nanofluid.


Author(s):  
Mahani Ahmad Kardri ◽  
Norfifah Bachok ◽  
Norihan Md. Arifin ◽  
Fadzilah Md. Ali ◽  
Yong Faezah Rahim

The Tiwari-Das model is used to investigate magnetohydrodynamic stagnation point flow and heat transfer past a nonlinear stretching or shrinking cylinder in nanofluid with viscous dissipation and heat generation using. The partial differential equations, also known as governing equations, were reduced to nonlinear ordinary differential equations using similarity transformation. MATLAB with the bvp4c solver is used for numerical computing. The controlling parameter, such as nanoparticle volume fraction, magnetic, curvature, nonlinear, radiation, and heat generation parameters, as well as Eckert and Grashof numbers, influence the skin friction coefficient, heat transfer rate, velocity, and temperature profiles. The results are presented as graphs to show the influence of the variables studied. In some circumstances of stretching and shrinking cases, dual solutions can be obtained.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1444
Author(s):  
Abdulkareem Saleh Hamarsheh ◽  
Firas A. Alwawi ◽  
Hamzeh T. Alkasasbeh ◽  
Ahmed M. Rashad ◽  
Ruwaidiah Idris

This numerical investigation intends to present the impact of nanoparticles volume fraction, Casson, and magnetic force on natural convection in the boundary layer region of a horizontal cylinder in a Casson nanofluid under constant heat flux boundary conditions. Methanol is considered as a host Casson fluid. Graphite oxide (GO), single and multiple walls carbon nanotubes (SWCNTs and MWCNTs) nanoparticles have been incorporated to support the heat transfer performances of the host fluid. The Keller box technique is employed to solve the transformed governing equations. Our numerical findings were in an excellent agreement with the preceding literature. Graphical results of the effect of the relevant parameters on some physical quantities related to examine the behavior of Casson nanofluid flow were obtained, and they confirmed that an augmentation in Casson parameter results in a decline in local skin friction, velocity, or temperature, as well as leading to an increment in local Nusselt number. Furthermore, MWCNTs are the most efficient in improving the rate of heat transfer and velocity, and they possess the lowest temperature.


Author(s):  
Nurul Amira Zainal ◽  
Kohilavani Naganthran ◽  
Roslinda Nazar

The study of unsteady flow is essential in various engineering systems, for instance, the periodic fluid motion and start-up process. Therefore, this numerical study focuses on examining the unsteady magnetohydrodynamics (MHD) rear stagnation-point flow in Al2O3-Cu/H2O hybrid nanofluid past a permeable stretching/shrinking surface with the impact of heat generation/absorption. By choosing a suitable similarity transformation, partial differential equations are transformed into a system of nonlinear ordinary differential equations and solved using the bvp4c function in the MATLAB package. The effects of the solution domain’s operating parameters are analysed, and dual solutions are observable as the sheet shrinks. It is found that the addition of the suction parameter escalates the heat transfer efficiency. Eventually, the existence of the unsteadiness parameter and the heat generation/absorption effect significantly encourage heat transfer deterioration.


Author(s):  
Wan Nor Zaleha Amin ◽  
Noraihan Afiqah Rawi ◽  
Mohd Ariff Admon ◽  
Sharidan Shafie

In this study, the effect of g-jitter fully developed heat transfer by mixed convection flow of nanofluid in a vertical channel is investigated. The nanoparticles of aluminum oxide and copper with water as a base fluid are used in this study. The equations corresponding to this study are solved analytically to find the exact solutions. The results of velocity and temperature profiles with the influence of physical parameters such as mixed convection, oscillation, temperature ratio and volume fraction of the nanoparticles are plotted and analyze in details. The behavior of steady state flow is also investigated. Results shown that as mixed convection, oscillation, and temperature ratio increased, the velocity profiles increased. The conductivity and viscosity of the nanofluid are also increased due to the increase of the volume fraction of nanoparticles in the water base fluid.


2021 ◽  
Vol 39 (3) ◽  
pp. 885-894
Author(s):  
Dondu Harish Babu ◽  
Nainaru Tarakaramu ◽  
Panyam Venkata Satya Narayana ◽  
Ganganapalli Sarojamma ◽  
Oluwole Daniel Makinde

This work explores the heat transfer flow characteristics of an incompressible non-Newtonian Jeffrey fluid over a stretching/shrinking surface with thermal radiation and heat source. The sheet is linearly stretched in the presence of a transverse magnetic field with convective boundary conditions. Appropriate similarity variables are used to transform the basic governing equations (PDEs) into ODEs. The resulting equations are solved by utilizing MATLAB bvp4c. The impact of distinctive physical parameters and dimensionless numbers on the flow field and heat transfer is analysed graphically. It is noticed that the measure of heat raised with increasing the Biot number and opposite effect with the rise of the suction parameter.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Rahimah Jusoh ◽  
Roslinda Nazar ◽  
Ioan Pop

The problem of boundary layer flow and heat transfer of magnetohydrodynamic (MHD) nanofluids which consist of Fe3O4, Cu, Al2O3, and TiO2 nanoparticles and water as the base fluid past a bidirectional exponentially permeable stretching/shrinking sheet is studied numerically. The mathematical model of the nanofluid incorporates the effect of viscous dissipation in the energy equation. By employing a suitable similarity transformation, the conservative equations for mass, momentum, and energy are transformed into the ordinary differential equations. These equations are then numerically solved with the utilization of bvp4c function in matlab. The effects of the suction parameter, magnetic parameter, nanoparticle volume fraction parameter, Eckert number, Prandtl number, and temperature exponent parameter to the reduced skin friction coefficient as well as the local Nusselt number are graphically presented. Cu is found to be prominently good in the thermal conductivity. Nevertheless, higher concentration of nanoparticles leads to the deterioration of heat transfer rate. The present result negates the previous literature on thermal conductivity enhancement with the implementation of nanofluid. Stability analysis is conducted since dual solutions exist in this study, and conclusively, the first solution is found to be stable.


2020 ◽  
Vol 1 (01) ◽  
pp. 11-22
Author(s):  
R. Jusoh ◽  
K. Naganthran ◽  
A. Jamaludin ◽  
M.H. Ariff ◽  
M.F.M. Basir ◽  
...  

Hybrid nanofluid has a vast potential of applications in the cooling system due to the high thermal conductivity. This study emphasizes on the impact of the convective boundary condition and viscous dissipation to the heat transfer of Ag-Cu hybrid nanofluid. A suitable similarity transformation is used to transform the partial differential equations of mass, momentum and energy into the ordinary differential equations. A finite difference code known as bvp4c in Matlab is employed to generate the numerical solutions. Stability analysis is conducted since dual solutions are generated in this study and the first solution exhibits the stability properties. The influence of variations in the suction parameter, viscous dissipation, nanoparticles concentration and Biot number on the on the temperature and velocity profiles of the hybrid nanofluid are portrayed. The rate of heat transfer is prominently higher with the augmentation of the Biot number and Ag nanoparticles concentration.


Sign in / Sign up

Export Citation Format

Share Document