Characteristics of combined heat and mass transfer on mixed convection flow of Sisko fluid model: A numerical study

2020 ◽  
Vol 34 (24) ◽  
pp. 2050255
Author(s):  
Aamir hamid ◽  
Abdul Hafeez ◽  
Masood Khan

In this paper, the combined heat and mass transfer of mixed convection, non-similar Sisko fluid flow in the presence of a magnetic field is studied. The combined effects of thermal radiation and heat generation/absorption are examined for Sisko fluid flow via local non-similar method. For the radiative heat transfer, Rosseland approximation model is used. The governing partial differential equations of the present problem are transformed into a system of nonlinear ordinary differential equations by employing the Sparrow–Quack–Boerner local non-similarity method (LNM). The obtained equations are then numerically investigated by utilizing the bvp4c function in MATLAB. The impact of different supervising parameters on the velocity, temperature, skin friction and rate of heat transfer is performed graphically. It is observed that the velocity is more for a higher rate of the buoyancy force parameter while it is less for opposing buoyancy fluid. The thermal boundary layer thickness for the shear thickening fluids is smaller than the shear thinning fluids.

2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Noraihan Afiqah Rawi ◽  
Abdul Rahman Mohd Kasim ◽  
Mukheta Isa ◽  
Sharidan Shafie

This paper studies unsteady mixed convection boundary layer flow of heat and mass transfer past an inclined stretching sheet associated with the effect of periodical gravity modulation or g-jitter. The temperature and concentration are assumed to vary linearly with x, where x is the distance along the plate. The governing partial differential equations are transformed to a set of coupled ordinary differential equations using non-similarity transformation and solved numerically by Keller-box method. Numerical results for velocity, temperature and concentration profiles as well as skin friction, Nusselt number and Sherwood number are presented and analyzed for different values of inclination angle parameter.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 170 ◽  
Author(s):  
Liaqat Ali ◽  
Xiaomin Liu ◽  
Bagh Ali ◽  
Saima Mujeed ◽  
Sohaib Abdal ◽  
...  

This article explores the impact of a magnetic dipole on the heat transfer phenomena of different nano-particles Fe (ferromagnetic) and Fe3O4 (Ferrimagnetic) dispersed in a base fluid ( 60 % water + 40 % ethylene glycol) on micro-polar fluid flow over a stretching sheet. A magnetic dipole in the presence of the ferrities of nano-particles plays an important role in controlling the thermal and momentum boundary layers. The use of magnetic nano-particles is to control the flow and heat transfer process through an external magnetic field. The governing system of partial differential equations is transformed into a system of coupled nonlinear ordinary differential equations by using appropriate similarity variables, and the transformed equations are then solved numerically by using a variational finite element method. The impact of different physical parameters on the velocity, the temperature, the Nusselt number, and the skin friction coefficient is shown. The velocity profile decreases in the order Fe (ferromagnetic fluid) and Fe3O4 (ferrimagnetic fluid). Furthermore, it was observed that the Nusselt number is decreasing with the increasing values of boundary parameter ( δ ) , while there is controversy with respect to the increasing values of radiation parameter ( N ) . Additionally, it was observed that the ferromagnetic case gained maximum thermal conductivity, as compared to ferrimagnetic case. In the end, the convergence of the finite element solution was observed; the calculations were found by reducing the mesh size.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Tasawar Hayat ◽  
Ikram Ullah ◽  
Ahmed Alsaedi ◽  
Bashir Ahamad

This paper addresses nonlinear mixed convection flow due to Riga plate with double stratification. Heat transfer analysis is reported for heat generation/absorption and nonlinear thermal radiation. Physical problem is mathematically modeled and nonlinear system of partial differential equations is achieved. Transformations are then utilized to obtain nonlinear system of ordinary differential equations. Homotopic technique is utilized for the solution procedure. Graphical descriptions for velocity, temperature, and concentration distributions are captured and argued for several set of physical variables. Features of skin friction and Nusselt and Sherwood numbers are also illustrated. Our computed results indicate that the attributes of radiation and temperature ratio variables enhance the temperature distribution. Moreover, the influence of buoyancy ratio and modified Hartmann number has revers effects on rate of heat transfer.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Noor ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose This paper aims to probe the problem of an unsteady mixed convection stagnation point flow and heat transfer past a stationary surface in an incompressible viscous fluid numerically. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation, which is then solved numerically by a Runge – Kutta – Fehlberg method with shooting technique and a collocation method, namely, the bvp4c function. Findings The effects of the governing parameters on the fluid flow and heat transfer characteristics are illustrated in tables and figures. It is found that dual (upper and lower branch) solutions exist for both the cases of assisting and opposing flow situations. A stability analysis has also been conducted to determine the physical meaning and stability of the dual solutions. Practical implications This theoretical study is significantly relevant to the applications of the heat exchangers placed in a low-velocity environment and electronic devices cooled by fans. Originality/value The case of suction on unsteady mixed convection flow at a three-dimensional stagnation point has not been studied before; hence, all generated numerical results are claimed to be novel.


Sign in / Sign up

Export Citation Format

Share Document