OBJECT-SHAPE RECOGNITION BY TACTILE IMAGE ANALYSIS USING SUPPORT VECTOR MACHINE

Author(s):  
ANWESHA KHASNOBISH ◽  
ARINDAM JATI ◽  
GARIMA SINGH ◽  
AMIT KONAR ◽  
D. N. TIBAREWALA

The sense of touch is important to human to understand shape, texture, and hardness of the objects. An object under grip, i.e. object exploration by enclosure, provides a unique pressure distribution on the different regions of palm depending on its shape. This paper utilizes the above experience for recognition of object shapes by tactile image analysis. The high pressure regions (HPRs) are segmented and analyzed for object shape recognition rather than analyzing the entire image. Tactile images are acquired by capacitive tactile sensor while grasping a particular object. Geometrical features are extracted from the chain codes obtained by polygon approximation of the contours of the segmented HPRs. Two-level classification scheme using linear support vector machine (LSVM) is employed to classify the input feature vector in respective object shape classes with an average classification accuracy of 93.46% and computational time of 1.19 s for 12 different object shape classes. Our proposed two-level LSVM reduces the misclassification rates, thus efficiently recognizes various object shapes from the tactile images.

2005 ◽  
Vol 31 (11) ◽  
pp. 1451-1459 ◽  
Author(s):  
Stavros Tsantis ◽  
Dionisis Cavouras ◽  
Ioannis Kalatzis ◽  
Nikos Piliouras ◽  
Nikos Dimitropoulos ◽  
...  

2013 ◽  
Vol 22 (3) ◽  
pp. 306 ◽  
Author(s):  
Alfonso Alonso-Benito ◽  
Lara A. Arroyo ◽  
Manuel Arbelo ◽  
Pedro Hernández-Leal ◽  
Alejandro González-Calvo

Four classification algorithms have been assessed and compared with mapped forest fuel types from Terra-ASTER sensor images in a representative area of Tenerife Island (Canary Islands, Spain). A BEHAVE fuel-type map from 2002, together with field data also obtained in 2002 during the Third Spanish National Forest Inventory, was used as reference data. The BEHAVE fuel types of the reference dataset were first converted into the Fire Behaviour Fuel Types described by Scott and Burgan, taking into account the vegetation of the study area. Then, three pixel-based algorithms (Maximum Likelihood, Neural Network and Support Vector Machine) and an Object-Based Image Analysis were applied to classify the Scott and Burgan fire behaviour fuel types from an ASTER image from 3 March 2003. The performance of the algorithms tested was assessed and compared in terms of quantity disagreement and allocation disagreement. Within the pixel-based classifications, the best results were obtained from the Support Vector Machine algorithm, which showed an overall accuracy of 83%; 14% of disagreement was due to allocation and 3% to quantity disagreement. The Object-Based Image Analysis approach produced the most accurate maps, with an overall accuracy of 95%; 4% disagreement was due to allocation and 1% to quantity disagreement. The object-based classification achieved thus an overall accuracy of 12% above the best results obtained for the pixel-based algorithms tested. The incorporation of context information to the object-based classification allowed better identification of fuel types with similar spectral behaviour.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3340 ◽  
Author(s):  
Ehsan Harirchian ◽  
Tom Lahmer ◽  
Vandana Kumari ◽  
Kirti Jadhav

The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 Düzce Earthquake in Turkey, where the building’s data consists of 22 performance modifiers that have been implemented with supervised machine learning.


2019 ◽  
Vol 11 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Ping Zhong ◽  
Mengdi Li ◽  
Kai Mu ◽  
Juan Wen ◽  
Yiming Xue

This article presents the linear Proximal Support Vector Machine (PSVM) to the image steganalysis, and further generates a very efficient method called PSVM-LSMR through implementing PSVM by the state-of-the-art optimization method Least Square Minimum-Residual (LSMR). Also, motivated by extreme learning machine (ELM), a nonlinear algorithm PSVM-ELM is proposed for the image steganalysis. It is shown by the experiments with the wide stego schemes and rich steganalysis feature sets in both the spatial and JPEG domains that the PSVM can achieve comparable performance with Fisher Linear Discriminant (FLD) and ridge regression, and its computational time is far more less than that of them on large feature sets. The PSVM-LSMR is comparable to Ridge Regression implemented by LSMR (RR-LSMR), and both of them require the least computational time among all the competitions when dealing with medium or large feature sets. The nonlinear PSVM-ELM performs comparably or even better than FLD and ridge regression for the spatial domain steganographic schemes, and its computational time is apparently less than that of them on large feature sets.


Author(s):  
Hiroyuki Nishiyama ◽  
Fumio Mizoguchi

In this study, the authors design a cognitive tool to detect malicious images using a smart phone. This tool can learn shot images taken with the camera of a smart phone and automatically classify the new image as a malicious image in the smart phone. To develop the learning and classifier tool, the authors implement an image analysis function and a learning and classifier function using a support vector machine (SVM) with the smart phone. With this tool, the user can collect image data with the camera of a smart phone, create learning data, and classify the new image data according to the learning data in the smart phone. In this study, the authors apply this tool to a user interface of a cosmetics recommendation service system and demonstrate its effectiveness by in reducing the load of the diagnosis server in this service and improving the user service.


Author(s):  
Dieter Bender ◽  
Ali Jalali ◽  
Daniel J. Licht ◽  
C. Nataraj

Prior work has documented that Support Vector Machine (SVM) classifiers can be powerful tools in predicting clinical outcomes of complex diseases such as Periventricular Leukomalacia (PVL). Our previous study showed that SVM performance can be improved significantly by optimizing the supervised training set used during the learning stage of the overall SVM algorithm. This study fully develops the initial idea using the reliable Leave-One-Out Cross-validation (LOOCV) technique. The work presented in this paper confirms previous results and improves the performance of the SVM even further. In addition, using the LOOCV technique, the computational time is decreased and the structure of the algorithm simplified, making this framework more feasible. Furthermore, we evaluate the performance of the resulting optimized SVM classifier on an unseen set of data. This demonstrates that the developed SVM algorithm outperforms normal SVM type classifiers without any loss of generalization.


2016 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Neneng Neneng ◽  
Kusworo Adi ◽  
Rizal Isnanto

Texture is one of the most important features for image analysis, which provides informations such as the composition of texture on the surface structure, changes of the intensity, or brightness. Gray level co-occurence matrix (GLCM) is a method that can be used for statistical texture analysis. GLCM has proven to be the most powerful texture descriptors used in image analysis. This study uses the four-way GLCM 0o, 45o, 90o, and 135o. Support vector machine (SVM) is a machine learning that can be used for image classification. SVM has a high generalization capability without any requirement of additional knowledge, even with the high dimension of the input space. The data used in this study are the image of goat meat, buffalo meat, horse meat, and beef with shooting distance 20 cm, 30 cm and 40 cm. The result of this study shows that the best recognition rate of 87.5% was taken at a distance of 20 cm with neighboring pixels distance d = 2 in the direction GLCM 135o.


Sign in / Sign up

Export Citation Format

Share Document