scholarly journals REALIZATION OF FIRST-ORDER CURRENT-MODE FILTERS WITH LOW NUMBER OF MOS TRANSISTORS

2013 ◽  
Vol 22 (01) ◽  
pp. 1250071 ◽  
Author(s):  
ERKAN YUCE ◽  
SHAHRAM MINAEI ◽  
NORBERT HERENCSAR ◽  
JAROSLAV KOTON

In this paper, a new current-mode (CM) circuit for realizing all of the first-order filter responses is suggested. The proposed configuration contains low number of components, only two NMOS transistors both operating in saturation region, two capacitors and two resistors. Major advantages of the presented circuit are low voltage, low noise and high linearity. The proposed filter circuit can simultaneously provide both inverting and non-inverting first-order low-pass, high-pass and all-pass filter responses. Computer simulation results achieved through SPICE tool and experimental results are given as examples to demonstrate performance and effectiveness of the proposed topology.

Author(s):  
Manoj Kumar Jain

Some time back, Kircay reported an electronically-tunable current-mode square-root-domain first-order filter capable of realizing low-pass (LP), high-pass (HP) and all-pass (AP) filter functions. When simulated in SPICE, Kircay’s circuit has been found to exhibit DC offsets in case of LP and AP responses and incorrect transient response in case of HP response. In this paper, an improved circuit overcoming these difficulties/deficiencies has been suggested and its workability of the improved circuit as well as its capability in meeting the intended objectives has been demonstrated by SPICE simulation results.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450116 ◽  
Author(s):  
HASAN SOZEN ◽  
UGUR CAM

The memristor has drawn the worldwide attention since it has been discovered at HP laboratory on 1 May 2008. Since then many researchers are taking efforts to find its applications in various areas. In this paper, we study the filter characteristics of first-order low pass and high pass filters employing memristor with a capacitor. The paper provides a comparative analysis between low pass and high pass filter circuits that utilizing ordinary resistor or memristor with a capacitor. The theoretical analyzes are verified with SPICE simulation results using a memristor SPICE model with nonlinear dopant drift and MATLAB environment. The effect of change of the input frequency and initial resistance value of memristor on the cut-off frequencies of the presented low pass and high pass filters are investigated. The memory effect of memristor is represented by simulation results.


2010 ◽  
Vol 19 (08) ◽  
pp. 1641-1650 ◽  
Author(s):  
FIRAT KAÇAR

A new tunable CMOS FDNR circuit is proposed. The circuit is based on the transcapacitive gyrator approach with both transcapacitive stages realized by MOS transistors configuration. This FDNR element lends itself well to the design of low-pass ladder filters and its use will result in a more efficient integrated circuit implementation than filters that simulate floating inductors utilizing resistive gyrators. The applications of FDNR to realize a current-mode fifth-order elliptic filter and current mode sixth-order elliptic band-pass filter are given. The proposed FDNR is simulated using CMOS TSMC 0.35 μm technology. Simulation results are given to confirm the theoretical analysis.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650042 ◽  
Author(s):  
Erkan Yuce ◽  
Shahram Minaei

In this paper, a new first-order current-mode (CM) universal filter employing two dual output second-generation current conveyors (DO-CCIIs), one resistor and a grounded capacitor is proposed. The proposed filter has low input and high output impedances; thus, it can be easily connected with other CM circuits. It can simultaneously realize first-order low-pass (LP) and all-pass (AP) responses and can provide high-pass (HP) response with interconnection of LP and AP responses. It can be tuned electronically by replacing with dual output second-generation current controlled conveyors (DO-CCCIIs) instead of DO-CCIIs and removing the resistor. It has only a resistor but no capacitor connected in series to X terminal of DO-CCII; accordingly, it can be operated at high frequencies. Also, it does not need any critical passive component matching conditions and cancellation constraints. A number of simulation results based on SPICE program are included to exhibit performance, workability and effectiveness of the proposed filter configuration.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350007 ◽  
Author(s):  
LEILA SAFARI ◽  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a novel first-order current-mode (CM) electronically tunable all-pass filter including one grounded capacitor and two dual-output current followers (DO-CFs) is presented. The used DO-CFs are implemented using only 10 MOS transistors granting the proposed CM all-pass filter extremely simple structure. The proposed filter is suitable for integrated circuit (IC) fabrication because it employs only a grounded capacitor and is free from passive component matching conditions. Interestingly the introduced configuration uses minimum number of components compared to other works. It also offers other interesting advantages such as, alleviating all disadvantages associated with the use of resistors, easy cascadability and satisfies all technology requirements such as small sizing, simple realization, low voltage and low power operation. Additionally, the circuit parameters can be easily set by adjusting control voltages. Most favorably, the proposed CM all-pass filter can be simply used as a voltage-mode (VM) all-pass filter with outstanding properties of adjustable gain and tunability. To further show the versatility of the proposed structure a sinusoidal oscillator is also derived from presented CM all-pass filter. Nonideal gain and parasitic impedance effects on developed CM filter are discussed. Finally, simulation results with SPICE program are included to confirm the theory.


Author(s):  
Firat Yucel

A current-mode first-order filter configuration simultaneously providing noninverting and inverting low-pass (LP) and high-pass (HP) responses depending on passive element choice is proposed. In addition, all-pass filter (APF) responses can be easily obtained with interconnection of LP and HP output currents. The proposed filter employs only two differential voltage current conveyors, a grounded resistor and a grounded capacitor, so it is suitable for integrated circuit realization. It provides the feature of high output impedance. It does not need any passive element matching constraints. A voltage-mode oscillator based on the inverting APF is presented as a typical application. The performance of the proposed configuration is verified through many SPICE simulation and experimental test results.


2017 ◽  
Vol 27 (02) ◽  
pp. 1850031 ◽  
Author(s):  
Norbert Herencsar ◽  
Jaroslav Koton ◽  
Abhirup Lahiri ◽  
Umut E. Ayten ◽  
Mehmet Sagbas

In this paper, a new realization of a current-mode first-order all-pass filter (APF) using a single active building block (ABB) and one grounded capacitor is presented. As the ABB, the current backward transconductance amplifier (CBTA) is used, which is one of the most recently reported active elements in the literature. The theoretical results are in detail verified by numerous SPICE simulations using a new low-voltage implementation of CBTA. In the design, the PTM 90[Formula: see text]nm level-7 CMOS process BSIM3v3 parameters with [Formula: see text]0.45[Formula: see text]V supply voltages were used. The proposed resistorless CBTA-C APF provides easy electronic tuning of the pole frequency in the frequency range from 763[Formula: see text]kHz to 17.6[Formula: see text]MHz, which is more than one decade. Maximum power dissipation of the circuit is 828[Formula: see text][Formula: see text]W at bias current 233[Formula: see text][Formula: see text]A. Nonideal, parasitic effects, sensitivity analyses, temperature and noise variation, current swing capability, and Monte Carlo analysis results are also provided. Compared to prior state-of-the-art works, the proposed CBTA-C APF has achieved the highest figure of Merit value, which proves its superior performance.


Sign in / Sign up

Export Citation Format

Share Document