scholarly journals Resistorless Current-Mode First-Order All-Pass Filter with Electronic Tuning Employing Low-Voltage CBTA and Grounded Capacitor

2017 ◽  
Vol 27 (02) ◽  
pp. 1850031 ◽  
Author(s):  
Norbert Herencsar ◽  
Jaroslav Koton ◽  
Abhirup Lahiri ◽  
Umut E. Ayten ◽  
Mehmet Sagbas

In this paper, a new realization of a current-mode first-order all-pass filter (APF) using a single active building block (ABB) and one grounded capacitor is presented. As the ABB, the current backward transconductance amplifier (CBTA) is used, which is one of the most recently reported active elements in the literature. The theoretical results are in detail verified by numerous SPICE simulations using a new low-voltage implementation of CBTA. In the design, the PTM 90[Formula: see text]nm level-7 CMOS process BSIM3v3 parameters with [Formula: see text]0.45[Formula: see text]V supply voltages were used. The proposed resistorless CBTA-C APF provides easy electronic tuning of the pole frequency in the frequency range from 763[Formula: see text]kHz to 17.6[Formula: see text]MHz, which is more than one decade. Maximum power dissipation of the circuit is 828[Formula: see text][Formula: see text]W at bias current 233[Formula: see text][Formula: see text]A. Nonideal, parasitic effects, sensitivity analyses, temperature and noise variation, current swing capability, and Monte Carlo analysis results are also provided. Compared to prior state-of-the-art works, the proposed CBTA-C APF has achieved the highest figure of Merit value, which proves its superior performance.

2019 ◽  
Vol 29 (08) ◽  
pp. 2050132
Author(s):  
Muhammed Emin Başak

Active elements are fundamental circuits for a wide scope of scientific and industrial processes. Many researchers have examined active devices to implement filters, oscillators, rectifiers, and converters. This paper presents the current differencing operational amplifier (CDOA) as an active element, firstly implemented with CMOS transistors. The input part of this circuit is a current differencing unit and the conventional operational amplifier (Op-Amp) pursues it. A new realization of a notch filter consists of CDOA is suggested. Voltage-mode band-pass filter and current-mode notch filter are presented as a different filter applications. Simulation results using TSMC 0.18-[Formula: see text]m CMOS process model are used to verify the theoretical analyses. The sensitivity, noise, total harmonic distortion (THD) and the Monte Carlo analysis have been performed to demonstrate the effectiveness of the proposed active element and notch filter.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250071 ◽  
Author(s):  
ERKAN YUCE ◽  
SHAHRAM MINAEI ◽  
NORBERT HERENCSAR ◽  
JAROSLAV KOTON

In this paper, a new current-mode (CM) circuit for realizing all of the first-order filter responses is suggested. The proposed configuration contains low number of components, only two NMOS transistors both operating in saturation region, two capacitors and two resistors. Major advantages of the presented circuit are low voltage, low noise and high linearity. The proposed filter circuit can simultaneously provide both inverting and non-inverting first-order low-pass, high-pass and all-pass filter responses. Computer simulation results achieved through SPICE tool and experimental results are given as examples to demonstrate performance and effectiveness of the proposed topology.


2006 ◽  
Vol 15 (05) ◽  
pp. 701-717 ◽  
Author(s):  
HSIAO WEI SU ◽  
YICHUANG SUN

A high-frequency highly linear tunable CMOS multiple-output operational transconductance amplifier (MO-OTA) for fully balanced current-mode OTA and capacitor (OTA-C) filters is presented. The MO-OTA is based on the cross-coupled pairs at the input and provides two pairs of differential outputs. A simple common-mode feedback (CMFB) circuit to stabilize the DC output levels of the MO-OTA is also proposed and two such CMFB circuits are used by the MO-OTA. The proposed MO-OTA is suitable for relatively low voltage (2.5 V) applications as its circuit has only two MOS transistors between the supply and ground rails. Simulated in a TSMC 0.25 μm CMOS process using PSpice, the MO-OTA has at least ± 0.3 V linear differential input signal swing with a single 2.5 V power supply and operates up to 1 GHz frequency. The MO-OTA has a THD less than -46 dB for a differential input voltage of 0.9 Vp-p at 10 MHz, dynamic range (DR) at THD = -46 dB is over 50 dB, and power consumption (with the common-mode feedback circuit) is below 8 mW for the whole tuning range. A fully balanced multiple loop feedback current-mode OTA-C filter example using the proposed MO-OTA is presented. This example also shows that the current-mode follow-the-leader-feedback (FLF) structure can achieve good performances for OTA-C filter design.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350007 ◽  
Author(s):  
LEILA SAFARI ◽  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a novel first-order current-mode (CM) electronically tunable all-pass filter including one grounded capacitor and two dual-output current followers (DO-CFs) is presented. The used DO-CFs are implemented using only 10 MOS transistors granting the proposed CM all-pass filter extremely simple structure. The proposed filter is suitable for integrated circuit (IC) fabrication because it employs only a grounded capacitor and is free from passive component matching conditions. Interestingly the introduced configuration uses minimum number of components compared to other works. It also offers other interesting advantages such as, alleviating all disadvantages associated with the use of resistors, easy cascadability and satisfies all technology requirements such as small sizing, simple realization, low voltage and low power operation. Additionally, the circuit parameters can be easily set by adjusting control voltages. Most favorably, the proposed CM all-pass filter can be simply used as a voltage-mode (VM) all-pass filter with outstanding properties of adjustable gain and tunability. To further show the versatility of the proposed structure a sinusoidal oscillator is also derived from presented CM all-pass filter. Nonideal gain and parasitic impedance effects on developed CM filter are discussed. Finally, simulation results with SPICE program are included to confirm the theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jitendra Mohan ◽  
Sudhanshu Maheshwari

A novel current-mode first-order all-pass filter with low input and high output impedance feature is presented. The circuit realization employs a single dual-X-second-generation current conveyor, one grounded capacitor, and one grounded resistor, which is a minimum component realization. The theoretical results are verified using PSPICE simulation program with TSMC 0.35 μm CMOS process parameters.


Sign in / Sign up

Export Citation Format

Share Document