Implantable CPW Fed Circular Slot Antennas at 2.45 GHz ISM Band for Biomedical Applications

2014 ◽  
Vol 24 (01) ◽  
pp. 1550014 ◽  
Author(s):  
S. Ashok Kumar ◽  
T. Shanmuganantham

A novel coplanar waveguide (CPW) fed circular slot antennas are proposed for industrial, scientific and medical (ISM) band (2.4–2.48 GHz) applications. To make the designed antenna suitable for implantation, it is embedded in biocompatible Al2O3 ceramic substrate. The antenna was simulated by immersing it in a phantom liquid, imitating the electrical properties of the human muscle tissue. A study of the sensitivity of the antenna performance as a function of the dielectric parameters of the environment in which it is immersed was performed. Simulations in various dimensions state demonstrate that the antenna covers the complete ISM band. The demonstration among the design EM characteristics of the antenna is presented by current distributions.

2014 ◽  
Vol 7 (5) ◽  
pp. 529-533 ◽  
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

A novel coplanar waveguide-fed Z-monopole antennas are proposed for the first time for a industrial, scientific, and medical (ISM) band (2.4–2.48 GHz) applications. To make the designed antenna suitable for implantation, it is embedded in biocompatible Al2O3ceramic substrate. The antenna operates at resonance frequency of 2.45 GHz to support wide band communication for high data rate implantable neural monitoring application. The size of the antenna is 38.675 mm3(8.5 mm × 7 mm × 0.65 mm). The antenna was simulated and measured by immersing it in a phantom liquid, imitate the electrical properties of the human body phantom liquid. The simulated and measured bandwidths are 10.2 and 11.4% at the centre frequency. A study of the sensitivity of the antenna performance as a function of its dielectric parameters of the environment in which it is immersed was performed. The demonstration among the design EM characteristics of the antenna is presented by current distributions.


2013 ◽  
Vol 6 (1) ◽  
pp. 101-107
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

Implantable antennas have recently been receiving substantial attention for medical diagnosis and treatment. In this paper, a coplanar waveguide-fed monopole antenna for industrial, scientific, and medical (ISM) band biomedical applications is proposed. The antenna has a simple structure is placed on human tissues such as muscle, fat, and skin. The designed antenna is made compatible for implantation by embedding it in an FR4 substrate. The proposed antenna is simulated using the method of moment's software IE3D by assuming the predetermined dielectric constant for the human muscle tissue, fat, and skin. The antenna operates in the frequency of ISM bands, 2.4–2.48 GHz. Simulated and measured gains attain −7.7 and −8 dBi in the frequency of 2.45 GHz. The radiation pattern, return loss, current distribution, and gain of these antennas were examined and characterized.


2013 ◽  
Vol 6 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

A novel coplanar waveguide fed Industrial, Scientific, and Medical (ISM) band implantable crossed-type triangular slot antenna is proposed for biomedical applications. The antenna operates at the center frequency of 2450 MHz, which is in ISM band, to support GHz wideband communication for high-data rate implantable biomedical application. The size of the antenna is 78 mm3 (10 mm × 12 mm × 0.65 mm). The simulated and measured bandwidths are 7.9 and 8.2% at the resonant frequency of 2.45 GHz. The specific absorption rate distribution induced by the implantable antenna inside a human body tissue model is evaluated. The communication between the implanted antenna and external device is also examined. The proposed antenna has substantial merits such as miniaturization, lower return loss, better impedance matching, and high gain over other implanted antennas.


2015 ◽  
Vol 16 (5) ◽  
pp. 250-253 ◽  
Author(s):  
S. Ashok Kumar ◽  
J. Navin Sankar ◽  
D. Dileepan ◽  
T. Shanmuganantham

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Navneet Sharma ◽  
Anubhav Kumar ◽  
Asok De ◽  
Rakesh K. Jain

Abstract A compact, circularly polarized, CPW-fed antenna is proposed for wearable applications in ISM Band (5.8 GHz). The antenna is based on DGS, where the ground plane is responsible for impedance matching. The 10 dB impedance of the proposed antenna varies from 5.39 GHz to 5.94 GHz. The circular stub introduced in the ground plane mitigates the surface current and enriches the 3 dB axial ratio from 5.73 GHz to 5.92 GHz. Proposed antenna exhibits the LHCP and RHCP pattern of circular polarization, the antenna can effectively work for biomedical and wearable applications. The antenna is analyzed on the skin phantom model and the SAR value obtained is 1.218 W/kg, which is below the maximum permissible level. The proposed antenna is also used for the detection of breast tumors.


2021 ◽  
Author(s):  
Adel M. El Sayed ◽  
Samy El-Gamal

Abstract Solid polymer electrolytes (SPEs) based on nanocomposites are attracting increasing attention due to their technological and industrial applications. In the present work, a facile aqueous casting method was utilized for the preparation of a starch-chitosan blend loaded with nanosized NaTiO3 (NTO) and co-mixed with ErCl3 (EC) salt. The interactions between OH group of starch and N–H group of chitosan with NTO and EC, and the films' crystallinity and surface morphology were studied by FTIR, XRD, and SEM. UV-Vis-NIR measurements showed the indirect (direct) optical band gaps decreased from 3.4 to 2.0 eV (4.5 to ~ 2.5 eV), i.e., ~ 41–44 % shrinking. At the time that the films maintained a reasonable transmittance. The optical constants of the films; extinction coefficient, refractive index, and the carrier’s concentration to the electron effective mass (N/m*) are reported. N/m* of the pure blend was 4.85 x 1039 (kg-1 m-3) increased to 1.64 times and 2.8 times after loading with 1.0% NTO and 20% EC, respectively. Various dielectric parameters (dielectric constant ε', dielectric loss ε'', ac conductivity σac, and dielectric moduli M' & M'') were evaluated in the frequency range 5 Hz - 1 MHz and temperatures of 298 - 353 K. The conductivity (σac) of the blend increased from 1.10×10-3 S/cm to 8.17×10-3 S/cm after modifying with 20% EC, i.e., became 8 times greater. Moreover, the influence of NTO and EC on the conduction mechanism and Cole-Cole plots are discussed. The improvements in the optical and electrical properties of EC/NTO/blend illustrate the possibility of extending the applications of these smart materials to include optoelectronic devices, batteries, and supercapacitors.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 43547-43554 ◽  
Author(s):  
Kumar Naik Ketavath ◽  
Dattatreya Gopi ◽  
Sriram Sandhya Rani

Sign in / Sign up

Export Citation Format

Share Document