CHAOS IN A NEAR-INTEGRABLE HAMILTONIAN LATTICE

2002 ◽  
Vol 12 (08) ◽  
pp. 1743-1754 ◽  
Author(s):  
VASSILIOS M. ROTHOS ◽  
CHRIS ANTONOPOULOS ◽  
LAMBROS DROSSOS

We study the chaotic dynamics of a near-integrable Hamiltonian Ablowitz–Ladik lattice, which is N + 2-dimensional if N is even (N + 1, if N is odd) and possesses, for all N, a circle of unstable equilibria at ε = 0, whose homoclinic orbits are shown to persist for ε ≠ 0 on whiskered tori. The persistence of homoclinic orbits is established through Mel'nikov conditions, directly from the Hamiltonian structure of the equations. Numerical experiments which combine space portraits and Lyapunov exponents are performed for the perturbed Ablowitz–Ladik lattice and large scale chaotic behavior is observed in the vicinity of the circle of unstable equilibria in the ε = 0 case. We conjecture that this large scale chaos is due to the occurrence of saddle-center type fixed points in a perturbed 1 d.o.f Hamiltonian to which the original system can be reduced for all N. As ε > 0 increases, the transient character of this chaotic behavior becomes apparent as the positive Lyapunov exponents steadily increase and the orbits escape to infinity.

2021 ◽  
pp. 1-11
Author(s):  
S. Koshy-Chenthittayil ◽  
E. Dimitrova ◽  
E.W. Jenkins ◽  
B.C. Dean

Many biological ecosystems exhibit chaotic behavior, demonstrated either analytically using parameter choices in an associated dynamical systems model or empirically through analysis of experimental data. In this paper, we use existing software tools (COPASI, R) to explore dynamical systems and uncover regions with positive Lyapunov exponents where thus chaos exists. We evaluate the ability of the software’s optimization algorithms to find these positive values with several dynamical systems used to model biological populations. The algorithms have been able to identify parameter sets which lead to positive Lyapunov exponents, even when those exponents lie in regions with small support. For one of the examined systems, we observed that positive Lyapunov exponents were not uncovered when executing a search over the parameter space with small spacings between values of the independent variables.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Christos K. Volos ◽  
Lazaros Moysis ◽  
George D. Roumelas ◽  
Aggelos Giakoumis ◽  
Hector E. Nistazakis ◽  
...  

In this paper, a chaotic three dimansional dynamical system is proposed, that is a modification of the system in Volos et al. (2017). The new system has two hyperbolic sine nonlinear terms, as opposed to the original system that only included one, in order to optimize system’s chaotic behavior, which is confirmed by the calculation of the maximal Lyapunov exponents and Kaplan-Yorke dimension. The system is experimentally realized, using Bi-color LEDs to emulate the hyperbolic sine functions. An extended dynamical analysis is then performed, by computing numerically the system’s bifurcation and continuation diagrams, Lyapunov exponents and phase portraits, and comparing the numerical simulations with the circuit simulations. A series of interesting phenomena are unmasked, like period doubling route to chaos, coexisting attractors and antimonotonicity, which are all verified from the circuit realization of the system. Hence, the circuit setup accurately emulates the chaotic dynamics of the proposed system.


2019 ◽  
Vol 4 (2) ◽  
pp. 315-330 ◽  
Author(s):  
Sk. Sarif Hassan ◽  
Moole Parameswar Reddy ◽  
Ranjeet Kumar Rout

AbstractThe Lorenz model is one of the most studied dynamical systems. Chaotic dynamics of several modified models of the classical Lorenz system are studied. In this article, a new chaotic model is introduced and studied computationally. By finding the fixed points, the eigenvalues of the Jacobian, and the Lyapunov exponents. Transition from convergence behavior to the periodic behavior (limit cycle) are observed by varying the degree of the system. Also transiting from periodic behavior to the chaotic behavior are seen by changing the degree of the system.


2013 ◽  
Vol 23 (06) ◽  
pp. 1330022
Author(s):  
RICARDO CHACÓN

It is shown that the dissipative chaotic dynamics of a charged particle in the field of a wave packet with an arbitrary but finite number of harmonics can be reliably suppressed by judiciously varying the constant phase of the main harmonic, ϕ0, while keeping null the corresponding constant phases of the remaining harmonics. The dependence of the chaotic threshold on the wave packet parameters is predicted theoretically (Melnikov method) and confirmed numerically (Lyapunov exponents). In particular, it is shown that ϕ0 is effective at suppressing the chaotic behavior existing when ϕ0 = 0 over a wide range of values of the wave packet width, while the remaining parameters are kept constant.


2010 ◽  
Vol 20 (01) ◽  
pp. 71-79 ◽  
Author(s):  
MEHMET ITIK ◽  
STEPHEN P. BANKS

In this study, we develop a new dynamical model of cancer growth, which includes the interactions between tumour cells, healthy tissue cells, and activated immune system cells, clearly leading to chaotic behavior. We explain the biological relevance of our model and the ways in which it differs from the existing ones. We perform equilibria analysis, indicate the conditions where chaotic dynamics can be observed, and show rigorously the existence of chaos by calculating the Lyapunov exponents and the Lyapunov dimension of the system. Moreover, we demonstrate that Shilnikov's theorem is valid in the parameter range of interest.


Transmission Line model are an important role in the electrical power supply. Modeling of such system remains a challenge for simulations are necessary for designing and controlling modern power systems.In order to analyze the numerical approach for a benchmark collection Comprehensive of some needful real-world examples, which can be utilized to evaluate and compare mathematical approaches for model reduction. The approach is based on retaining the dominant modes of the system and truncation comparatively the less significant once.as the reduced order model has been derived from retaining the dominate modes of the large-scale stable system, the reduction preserves the stability. The strong demerit of the many MOR methods is that, the steady state values of the reduced order model does not match with the higher order systems. This drawback has been try to eliminated through the Different MOR method using sssMOR tools. This makes it possible for a new assessment of the error system Offered that the Observability Gramian of the original system has as soon as been thought about, an H∞ and H2 error bound can be calculated with minimal numerical effort for any minimized model attributable to The reduced order model (ROM) of a large-scale dynamical system is essential to effortlessness the study of the system utilizing approximation Algorithms. The response evaluation is considered in terms of response constraints and graphical assessments. the application of Approximation methods is offered for arising ROM of the large-scale LTI systems which consist of benchmark problems. The time response of approximated system, assessed by the proposed method, is also shown which is excellent matching of the response of original system when compared to the response of other existing approaches .


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130024
Author(s):  
Weisheng Huang ◽  
Xiao-Song Yang

We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.


Sign in / Sign up

Export Citation Format

Share Document