FUZZY MODEL-BASED APPROACH TO CHAOTIC ENCRYPTION USING SYNCHRONIZATION

2003 ◽  
Vol 13 (01) ◽  
pp. 215-225 ◽  
Author(s):  
KUANG-YOW LIAN ◽  
PETER LIU ◽  
CHIAN-SONG CHIU ◽  
TUNG-SHENG CHIANG

This paper proposes a fuzzy model-based chaotic encryption approach using synchronization. The cryptosystem uses T–S fuzzy models to exactly represent discrete-time chaotic systems into separate linear systems. Then the synchronization problem is solved using linear matrix inequalities. The advantages of this approach are: the general and systematic T–S fuzzy model design methodology suitable for well-known Luré type discrete-time chaotic systems; flexibility in selection of chaotic signals for cryptosystem secure key generator; and multiuser capabilities. Especially taking a chaotic superincreasing sequence as an encryption key enhances the chaotic communication structure to a higher-level of security compared to traditional masking methods. In addition, numerical simulations and DSP-based experiments are carried out to verify the validity of theoretical results.

2006 ◽  
Vol 16 (05) ◽  
pp. 1435-1444 ◽  
Author(s):  
H. K. LAM ◽  
F. H. F. LEUNG

This paper investigates the synchronization of chaotic systems subject to parameter uncertainties. Based on the fuzzy-model-based approach, a switching controller will be proposed to deal with the synchronization problem. The stability conditions will be derived based on the Lyapunov approach. The tracking performance and parameter design of the proposed switching controller will be formulated as a generalized eigenvalue minimization problem which can be solved numerically using some convex programming techniques. Simulation examples will be given to show the effectiveness of the proposed approach.


Author(s):  
Yi-Min Li ◽  
Yuan-Yuan Li

This paper presents the stability analysis of discrete-time fuzzy-model-based adaptive control systems with time-delay, parameter uncertainties and external disturbance. To facilitate the stability analysis, the T-S fuzzy model is employed to represent the discretetime nonlinear system. A fuzzy observer is used to estimate the state of the fuzzy system, by using the estimations of states and nonlinear functions, and sufficient conditions for designing observer-based fuzzy controllers are proposed. The control and observer matrices involved can be determined by solving a set of linear matrix inequality (LMI). Finally, the numerical example carried out also demonstrate the feasibility of the design method.


Author(s):  
Natache S. D. Arrifano ◽  
Vilma A. Oliveira

This paper deals with the fuzzy-model-based control design for a class of Markovian jump nonlinear systems. A fuzzy system modeling is proposed to represent the dynamics of this class of systems. The structure of the fuzzy system is composed of two levels, a crisp level which describes the Markovian jumps and a fuzzy level which describes the system nonlinearities. A sufficient condition on the existence of a stochastically stabilizing controller using a Lyapunov function approach is presented. The fuzzy-model-based control design is formulated in terms of a set of linear matrix inequalities. Simulation results for a single-machine infinite-bus power system which is modeled as a Markovian jump nonlinear system in the infinite-bus voltage are presented to illustrate the applicability of the technique.


2018 ◽  
Vol 93 (4) ◽  
pp. 2461-2471 ◽  
Author(s):  
Bo Wang ◽  
Dian Zhang ◽  
Jun Cheng ◽  
Ju H. Park

2011 ◽  
Vol 25 (23n24) ◽  
pp. 3253-3267 ◽  
Author(s):  
CHOON KI AHN ◽  
PYUNG SOO KIM

In this paper, we propose a new adaptive synchronization method, called a fuzzy adaptive delayed feedback synchronization (FADFS) method, for time-delayed chaotic systems with uncertain parameters. An FADFS controller that is based on the Lyapunov–Krasovskii theory, Takagi–Sugeno (T–S) fuzzy model, and delayed feedback control is developed to guarantee adaptive synchronization. The proposed controller can be obtained by solving the linear matrix inequality (LMI) problem. A numerical example using a time-delayed Lorenz system is discussed to assess the validity of the proposed FADFS method.


2007 ◽  
Vol 17 (09) ◽  
pp. 3199-3209 ◽  
Author(s):  
C. D. CAMPOS ◽  
R. M. PALHARES ◽  
E. M. A. M. MENDES ◽  
L. A. B. TORRES ◽  
L. A. MOZELLI

This paper investigates the synchronization of coupled chaotic systems using techniques from the theory of robust [Formula: see text] control based on Linear Matrix Inequalities. To deal with the synchronization of a class of Lur'e discrete time systems, a project methodology is proposed. A laboratory setup based on Chua's oscillator circuit is used to demonstrate the main ideas of the paper in the context of the problem of information transmission.


Sign in / Sign up

Export Citation Format

Share Document