scholarly journals Invariant Sets of Hybrid Autonomous Systems with Disturbance

2010 ◽  
Vol 2010 ◽  
pp. 1-12
Author(s):  
Li Jian-Qiang ◽  
Zhu Zexuan ◽  
Ji Zhen ◽  
Pei Hai-Long

The concept and model of hybrid systems are introduced. Invariant sets introduced by LaSalle are proposed, and the concept is extended to invariant sets in hybrid systems which include disturbance. It is shown that the existence of invariant sets by arbitrary transition in hybrid systems is determined by the existence of common Lyapunov function in the systems. Based on the Lyapunov function, an efficient transition method is proposed to ensure the existence of invariant sets. An algorithm is concluded to compute the transition mode, and the invariant set can also be computed as a convex problem. The efficiency and correctness of the transition algorithm are demonstrated by an example of hybrid systems.

2013 ◽  
Vol 23 (01) ◽  
pp. 1350007 ◽  
Author(s):  
XINQUAN ZHAO ◽  
FENG JIANG ◽  
JUNHAO HU

In this paper, the existence of globally exponentially attractive sets and positive invariant sets of three-dimensional autonomous systems with only cross-product nonlinearities are considered. Sufficient conditions, which guarantee the existence of globally exponentially attractive set and positive invariant set of the system, are obtained. The results of this paper comprise some existing relative results as in special cases. The approach presented in this paper can be applied to study other chaotic systems.


2006 ◽  
Vol 2006 ◽  
pp. 1-17 ◽  
Author(s):  
A. El Hajjaji ◽  
A. Benzaouia ◽  
M. Naib

We deal with the extension of the positive invariance approach to nonlinear systems modeled by Takagi-Sugeno fuzzy systems. The saturations on the control are taken into account during the design phase. Sufficient conditions of asymptotic stability are given ensuring at the same time that the control is always admissible inside the corresponding polyhedral set. Both a common Lyapunov function and piecewise Lyapunov function are used.


2021 ◽  
pp. 107754632098598
Author(s):  
Marwen Kermani ◽  
Anis Sakly

This study is concerned with the stability analysis and the feedback stabilization problems for a class of uncertain switched nonlinear systems with multiple time-varying delays. Unusually, more general time delays, which depend on the subsystem number, are considered. In this regard, by constructing a novel common Lyapunov function, using the aggregation techniques and the Borne and Gentina criterion, new algebraic stability and feedback stabilization conditions under arbitrary switching are derived. The proposed results are explicit and obtained without searching a common Lyapunov function through the linear matrix inequalities approach, considered a difficult matter in this case. At last, two numerical simulation examples are shown to prove the practical utility of the suggested approach.


1999 ◽  
Vol 19 (2) ◽  
pp. 523-534 ◽  
Author(s):  
DAVID MEIRI ◽  
YUVAL PERES

Let $A,B$ be two diagonal endomorphisms of the $d$-dimensional torus with corresponding eigenvalues relatively prime. We show that for any $A$-invariant ergodic measure $\mu$, there exists a projection onto a torus ${\mathbb T}^r$ of dimension $r\ge\dim\mu$, that maps $\mu$-almost every $B$-orbit to a uniformly distributed sequence in ${\mathbb T}^r$. As a corollary we obtain that the Hausdorff dimension of any bi-invariant measure, as well as any closed bi-invariant set, is an integer.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yang Yang ◽  
Hamid Reza Karimi ◽  
Zhengrong Xiang

This paper is concerned with the design problem of robust switching rule for Boost converters with uncertain parameters and disturbances. Firstly, the Boost converter is modeled as a switched affine linear system with uncertain parameters and disturbances. Then, using common Lyapunov function approach and linear matrix inequality (LMI) technique, a novel switching rule is proposed such that the model reference tracking performance is satisfied. Finally, a simulation result is provided to show the validity of the proposed method.


1989 ◽  
Vol 111 (4) ◽  
pp. 641-645 ◽  
Author(s):  
Andrzej Olas

The paper presents the concept of recursive Lyapunov function. The concept is applied to investigation of asymptotic stability problem of autonomous systems. The sequence of functions {Uα(i)} and corresponding performance measures λ(i) are introduced. It is proven that λ(i+1) ≤ λ(i) and in most cases the inequality is a strong one. This fact leads to a concept of a recursive Lyapunov function. For the very important applications case of exponential stability the procedure is effective under very weak conditions imposed on the function V = U(0). The procedure may be particularly applicable for the systems dependent on parameters, when the Lyapunov function determined from one set of parameters may be employed at the first step of the procedure.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Wenyuan Duan ◽  
Heyuan Wang ◽  
Meng Kan

The dynamic behavior of a chaotic system in the internal wave dynamics and the problem of the tracing and synchronization are investigated, and the numerical simulation is carried out in this paper. The globally exponentially attractive set and positive invariant set of the chaotic system are studied via constructing the positive definite and radial unbounded Lyapunov function. There are no equilibrium positions, periodic solutions, quasi-period motions, wandering recovering motions, and other chaotic attractors of the system out of the globally exponentially attractive set. Strange attractors can only locate in the globally exponentially attractive set. A feedback controller is designed for the chaotic system to realize the control of the unstable point. The second method of Lyapunov is used to discuss theoretically the rationality of the design of the controller. The driving-response synchronization method is used to realize the globally exponential synchronization. The numerical simulation is carried out by MATLAB software, and the simulation results show that the method is effective.


Sign in / Sign up

Export Citation Format

Share Document