DYNAMICS OF REACTION-DIFFUSION INTERFACES UNDER STOCHASTIC CONVECTION: PRELIMINARY RESULTS

1994 ◽  
Vol 04 (05) ◽  
pp. 1329-1331 ◽  
Author(s):  
A. CARETA ◽  
F. SAGUÉS ◽  
J.M. SANCHO

Some preliminary results to illustrate the effect of turbulent convection on the dynamics of physicochemical systems incorporating reaction, diffusion and convection of chemical species are given. The whole approach rests on the use of stochastic differential equations with spatiotemporal correlated noise. In particular, it is shown how the propagation velocity of a chemically reacting front can be enhanced due to the fluid motion.

2015 ◽  
Vol 29 (34) ◽  
pp. 1530015 ◽  
Author(s):  
Richard J. Field

The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov–Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle.


2019 ◽  
Vol 20 (5) ◽  
pp. 502 ◽  
Author(s):  
Aaqib Majeed ◽  
Ahmed Zeeshan ◽  
Farzan Majeed Noori ◽  
Usman Masud

This article is focused on Maxwell ferromagnetic fluid and heat transport characteristics under the impact of magnetic field generated due to dipole field. The viscous dissipation and heat generation/absorption are also taken into account. Flow here is instigated by linearly stretchable surface, which is assumed to be permeable. Also description of magneto-thermo-mechanical (ferrohydrodynamic) interaction elaborates the fluid motion as compared to hydrodynamic case. Problem is modeled using continuity, momentum and heat transport equation. To implement the numerical procedure, firstly we transform the partial differential equations (PDEs) into ordinary differential equations (ODEs) by applying similarity approach, secondly resulting boundary value problem (BVP) is transformed into an initial value problem (IVP). Then resulting set of non-linear differentials equations is solved computationally with the aid of Runge–Kutta scheme with shooting algorithm using MATLAB. The flow situation is carried out by considering the influence of pertinent parameters namely ferro-hydrodynamic interaction parameter, Maxwell parameter, suction/injection and viscous dissipation on flow velocity field, temperature field, friction factor and heat transfer rate are deliberated via graphs. The present numerical values are associated with those available previously in the open literature for Newtonian fluid case (γ 1 = 0) to check the validity of the solution. It is inferred that interaction of magneto-thermo-mechanical is to slow down the fluid motion. We also witnessed that by considering the Maxwell and ferrohydrodynamic parameter there is decrement in velocity field whereas opposite behavior is noted for temperature field.


2008 ◽  
Vol 19 (04) ◽  
pp. 557-567 ◽  
Author(s):  
ANDREW ADAMATZKY ◽  
LARRY BULL ◽  
PIERRE COLLET ◽  
EMMANUEL SAPIN

We consider hexagonal cellular automata with immediate cell neighbourhood and three cell-states. Every cell calculates its next state depending on the integral representation of states in its neighbourhood, i.e., how many neighbours are in each one state. We employ evolutionary algorithms to breed local transition functions that support mobile localizations (gliders), and characterize sets of the functions selected in terms of quasi-chemical systems. Analysis of the set of functions evolved allows to speculate that mobile localizations are likely to emerge in the quasi-chemical systems with limited diffusion of one reagent, a small number of molecules are required for amplification of travelling localizations, and reactions leading to stationary localizations involve relatively equal amount of quasi-chemical species. Techniques developed can be applied in cascading signals in nature-inspired spatially extended computing devices, and phenomenological studies and classification of non-linear discrete systems.


Author(s):  
Amar B. Patil ◽  
Vishwambhar S. Patil ◽  
Pooja P. Humane ◽  
Nalini S. Patil ◽  
Govind R. Rajput

The present work deals with chemically reacting unsteady magnetohydrodynamic Maxwell nanofluid flow past an inclined permeable stretching surface embedded in a porous medium with thermal radiation. The formulated governing partial differential equations conveying the flow model of Maxwell with Buongiorno modeled nanofluid is transformed into the system of highly non-linear ordinary differential equations via suitable similarity transformations; those equations are transmuted into an initial value problem and then solved numerically by a shooting approach with Runge–-Kutta fourth-order schema. To obtain the physical insight of the flow situation, the influence of associated parameters on the velocity, temperature, and concentration profiles is sketched graphically with the aid of MATLAB software. Furthermore, engineering quantities of interest are interpreted graphically. The computed numerical results are compared to estimate the validity of the achieved results; it has been found out that the computed results are highly accurate. The impact of the Maxwell parameter and inclination angle of the sheet on the velocity field is observed in decaying. Both thermal and solutal energy transport are progressive in nature as the Maxwell parameter and thermophoresis parameter grows, and a reverse trend is observed for Prandtl number.


Author(s):  
Benjamin Ambrosio ◽  
Jean-Pierre Françoise

We investigate a system of partial differential equations of reaction–diffusion type which displays propagation of bursting oscillations. This system represents the time evolution of an assembly of cells constituted by a small nucleus of bursting cells near the origin immersed in the middle of excitable cells. We show that this system displays a global attractor in an appropriated functional space. Numerical simulations show the existence in this attractor of recurrent solutions which are waves propagating from the central source. The propagation seems possible if the excitability of the neighbouring cells is above some threshold.


2001 ◽  
Vol 432 ◽  
pp. 167-200 ◽  
Author(s):  
ODD M. FALTINSEN ◽  
ALEXANDER N. TIMOKHA

Two-dimensional nonlinear sloshing of an incompressible fluid with irrotational flow in a rectangular tank is analysed by a modal theory. Infinite tank roof height and no overturning waves are assumed. The modal theory is based on an infinite-dimensional system of nonlinear ordinary differential equations coupling generalized coordinates of the free surface and fluid motion associated with the amplitude response of natural modes. This modal system is asymptotically reduced to an infinite-dimensional system of ordinary differential equations with fifth-order polynomial nonlinearity by assuming sufficiently small fluid motion relative to fluid depth and tank breadth. When introducing inter-modal ordering, the system can be detuned and truncated to describe resonant sloshing in different domains of the excitation period. Resonant sloshing due to surge and pitch sinusoidal excitation of the primary mode is considered. By assuming that each mode has only one main harmonic an adaptive procedure is proposed to describe direct and secondary resonant responses when Moiseyev-like relations do not agree with experiments, i.e. when the excitation amplitude is not very small, and the fluid depth is close to the critical depth or small. Adaptive procedures have been established for a wide range of excitation periods as long as the mean fluid depth h is larger than 0.24 times the tank breadth l. Steady-state results for wave elevation, horizontal force and pitch moment are experimentally validated except when heavy roof impact occurs. The analysis of small depth requires that many modes have primary order and that each mode may have more than one main harmonic. This is illustrated by an example for h/l = 0.173, where the previous model by Faltinsen et al. (2000) failed. The new model agrees well with experiments.


1993 ◽  
Vol 03 (05) ◽  
pp. 1269-1279 ◽  
Author(s):  
JONATHAN A. SHERRATT

Transition waves are widespread in the biological and chemical sciences, and have often been successfully modelled using reaction–diffusion systems. I consider a particular system of three reaction–diffusion equations, and I show that transition waves can destabilise as the kinetic ordinary differential equations pass through a Hopf bifurcation, giving rise to either regular or irregular spatiotemporal oscillations behind the advancing transition wave front. In the case of regular oscillations, I show that these are periodic plane waves that are induced by the way in which the transition wave front approaches its terminal steady state. Further, I show that irregular oscillations arise when these periodic plane waves are unstable as reaction–diffusion solutions. The resulting behavior is not related to any chaos in the kinetic ordinary differential equations.


2013 ◽  
Vol 13 (4) ◽  
pp. 958-984 ◽  
Author(s):  
Mohammad Hossein Bani-Hashemian ◽  
Stefan Hellander ◽  
Per Lötstedt

AbstractIn event-driven algorithms for simulation of diffusing, colliding, and reacting particles, new positions and events are sampled from the cumulative distribution function (CDF) of a probability distribution. The distribution is sampled frequently and it is important for the efficiency of the algorithm that the sampling is fast. The CDF is known analytically or computed numerically. Analytical formulas are sometimes rather complicated making them difficult to evaluate. The CDF may be stored in a table for interpolation or computed directly when it is needed. Different alternatives are compared for chemically reacting molecules moving by Brownian diffusion in two and three dimensions. The best strategy depends on the dimension of the problem, the length of the time interval, the density of the particles, and the number of different reactions.


Sign in / Sign up

Export Citation Format

Share Document