A DECOMPOSITION OF L2(Ω)3 AND AN APPLICATION TO MAGNETOSTATIC EQUATIONS

1993 ◽  
Vol 03 (03) ◽  
pp. 289-301 ◽  
Author(s):  
PATRICK CIARLET

The domain Ω considered in the following is an open, bounded and connected subset of R3. The purpose of this paper is to find a decomposition of the space of functions L2(Ω)3 of the form grad P⊕ curl W and then to apply this result to the magnetostatic set of equations. Moreover, we prove that if the spaces P and W are chosen correctly, a function u of L2(Ω)3 can be written as grad p+curl w, p∈P and w∈W being unique (up to a constant for p). In the case of the magnetostatic equations, we provide a characterization of the magnetic field solution of these equations.

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
E. Chiaramello ◽  
S. Fiocchi ◽  
P. Ravazzani ◽  
M. Parazzini

This study focused on the evaluation of the exposure of children aging from five to fourteen years to 50 Hz homogenous magnetic field uncertain orientation using stochastic dosimetry. Surrogate models allowed assessing how the variation of the orientation of the magnetic field influenced the induced electric field in each tissue of the central nervous system (CNS) and in the peripheral nervous system (PNS) of children. Results showed that the electric field induced in CNS and PNS tissues of children were within the ICNIRP basic restrictions for general public and that no significant difference was found in the level of exposure of children of different ages when considering 10000 possible orientations of the magnetic field. A “mean stochastic model,” useful to estimate the level of exposure in each tissue of a representative child in the range of age from five to fourteen years, was developed. In conclusion, this study was useful to deepen knowledge about the ELF-MF exposure, including the evaluation of variable and uncertain conditions, thus representing a step towards a more realistic characterization of the exposure to EMF.


2008 ◽  
Vol 385 (1) ◽  
pp. 391-403 ◽  
Author(s):  
E. Alecian ◽  
C. Catala ◽  
G. A. Wade ◽  
J.-F. Donati ◽  
P. Petit ◽  
...  

1988 ◽  
Vol 42 (1) ◽  
pp. 77-83 ◽  
Author(s):  
E. T. Johnson ◽  
R. D. Sacks

The plasma produced by a high-current capacitive discharge through a graphite fiber bundle is compressed by a magnetic field coaxial with the plasma. The magnetic field is generated by the plasma current in a large coil surrounding the plasma. The field induces an azimuthal (theta) current in the plasma. This current couples with the external magnetic field and produces a radial Lorentz force which reduces the rate of plasma expansion. A diode shunt in the capacitive discharge circuit is used for the generation of a unidirectional discharge current. This arrangement eliminates zero-crossings of the discharge current and thus increases the effectiveness of the magnetic field in controlling the radiative properties of the plasma. Design features of the discharge circuit are presented, as well as a comparison of the plasma properties with oscillatory and unidirectional discharge current waveforms.


2021 ◽  
Vol 87 (5) ◽  
Author(s):  
Srimanta Maity ◽  
Devshree Mandal ◽  
Ayushi Vashistha ◽  
Laxman Prasad Goswami ◽  
Amita Das

The mechanism of harmonic generation in both O- and X-mode configurations for a magnetized plasma has been explored here in detail with the help of particle-in-cell simulations. A detailed characterization of both the reflected and transmitted electromagnetic radiation propagating in the bulk of the plasma has been carried out for this purpose. The efficiency of harmonic generation is shown to increase with the incident laser intensity. A dependency of harmonic efficiency has also been found on magnetic field strength. This work demonstrates that there is an optimum value of the magnetic field at which the efficiency of harmonic generation maximizes. The observations are in agreement with theoretical analysis. For the O-mode configuration, this is compelling as the harmonic generation provides for a mechanism by which laser energy can propagate inside an overdense plasma region.


2021 ◽  
Vol 10 (14) ◽  
pp. e470101422189
Author(s):  
Anuar José Mincache ◽  
Odair Gonçalves de Oliveira ◽  
Lilian Felipe da Silva Tupan ◽  
Daniel Matos Silva ◽  
Ivair Aparecido dos Santos ◽  
...  

In this work Bi1−xNdxFe0.99Co0.01O3 ceramics compositions were synthesized for x = 0.05, 0.20 and, y = 0.01. Structural refinement results show that most of the samples crystallized in a rhombohedral symmetry with R3c. Measurements magnetoelectric coefficient, show that the magnetoelectric coefficients are of second order. The electrical impedance characterization of in function external magnetic fields, has a relative variation of the real dielectric response, the loss tangent and the electrical impedance. The systems, as the DC magnetic field strength increased a gain in both the values of the dielectric constant variation, as well as the variation of the electrical impedance. In other words, the greater the intensity of the magnetic field, the greater your response. There were also significant variations with of the magnetic field AC.  


Sign in / Sign up

Export Citation Format

Share Document