HYDROMAGNETIC FLOW OF A SECOND-GRADE FLUID IN A CHANNEL — SOME APPLICATIONS TO PHYSIOLOGICAL SYSTEMS

1998 ◽  
Vol 08 (08) ◽  
pp. 1323-1342 ◽  
Author(s):  
J. C. MISRA ◽  
B. PAL ◽  
A. S. GUPTA

An asymptotic series solution for steady flow of an incompressible, second-grade electrically conducting fluid in a channel permeated by a uniform transverse magnetic field is presented. The depth of the channel is assumed to vary slowly in the axial direction. Analytical expressions are derived for the vorticity and pressure drop along the channel as well as the wall shear stress. It is found that for fixed values of the Reynolds number R and the non-Newtonian parameter K1, the wall shear stress increases with increasing value of magnetic parameter M. Numerical computations carried out for a specific slowly varying channel show that flow separation occurs for both second-grade (K1<0) and second-order (K1>0) fluids when |K1|<0.15. The analysis also reveals the interesting result that while flow separation takes place for a second-order fluid for K1≥0.15, no separation occurs at all for |K1|≥0.15 for a second-grade fluid.

Author(s):  
Han-Sheng Chuang ◽  
Steven T. Wereley

Conventional single pixel evaluation (SPE) significantly improves the spatial resolution of PIV measurements to the physical limit of a CCD camera based on the forward difference interrogation (FDI). This paper further enhances the computational algorithm to second-order accuracy by simply modifying the numerical scheme with the central difference interrogation (CDI). The proposed central difference scheme basically superposes the forward-time and the backward-time correlation domains, thus resulting in reduced bias error as well as rapid background noise elimination. An assessment of the CDI SPE algorithm regarding the measurement errors was achieved via numerous synthetic images subject to a four-roll mill flow. In addition, preliminary wall shear stress (WSS) measurements regarding different algorithms are also evaluated with an analytical turbulent boundary flow. CDI scheme showed a 0.32% error deviated from the analytical solution and improved the same error in FFT-based correlation correlation (FFT-CC) by 32.35%. To demonstrate the performance in practice, in-vitro measurements were implemented in a serpentine microchannel made of polydimethyl siloxane (PDMS) for both CDI SPE and spatial cross-correlation. A series of steady-state flow images at five specified regions of interest were acquired using micro-PIV system. Final comparisons of the WSS regarding the Pearson correlation coefficient, R2, between the numerical schemes and the simulations showed that an overall result was improved by CDI SPE due to the fine resolution and the enhanced accuracy.


2018 ◽  
Vol 15 (05) ◽  
pp. 1850032 ◽  
Author(s):  
Xiaolei Bi ◽  
Shanjun Mu ◽  
Qingxia Liu ◽  
Quanzhen Liu ◽  
Baoquan Liu ◽  
...  

To solve the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative in a bounded domain is important in the research for diffusion processes. In this paper, novel implicit meshless approaches based on the moving least squares (MLS) approximation for spatial discretization and two different time discrete schemes, which are the first-order semi-discrete scheme and the second-order semi-discrete scheme for time, are developed for the numerical simulation of the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative in a bounded domain. Based on these two time discretization schemes, the newly developed meshless approaches will have the first-order and the second-order accuracy in time, respectively. The stability and convergence of the implicit MLS meshless approaches are discussed and theoretically proven. Numerical examples with different problem domains and different nodal distributions are studied to validate and investigate accuracy and efficiency of the newly developed meshless approaches. It has found that the newly developed meshless approaches are accurate and convergent for fractional partial differential equations (FPDEs). Most importantly, the meshless approaches are robust for arbitrarily distributed nodes and complex domains.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350016
Author(s):  
A. M. SIDDIQUI ◽  
T. HAROON ◽  
Z. BANO ◽  
S. ISLAM

Analytical solutions are obtained for steady flow of an incompressible second grade fluid in an axisymmetric channel of varying width. Three approximate methods are used depending upon three different geometrical configuration. The results obtained are applied to study the flow of a second grade fluid through a smooth constriction. To understand the flow behavior near stenosis, resistance to the flow, shear stress at the wall and stress at the stenosis throat are calculated. The results obtained are numerically evaluated for different values of dimensionless non-Newtonian parameters λ1 and λ2 and maximum height of the stenosis δm. It is observed that as we increase the value of these parameters the resistance to the flow, wall shear stress and stress at the stenosis throat increase.


2015 ◽  
Vol 31 (5) ◽  
pp. 573-582
Author(s):  
Q. Sultan ◽  
M. Nazar ◽  
I. Ahmad ◽  
U. Ali

AbstractThis paper concerns with the unsteady MHD flow of a second grade fluid between two parallel walls through porous media induced by rectified sine pulses shear stress. The analytical expressions for the velocity field and the adequate shear stress are determined by means of the Laplace transform technique and Fourier cosine and sine transforms and are written as a sum of steady state and transient solutions. The influence of side walls on the fluid motion, the distance between walls for which the velocity of the fluid in the middle of the channel is negligible, and the required time to reach the steady state are presented by graphical illustrations. As the second grade fluid parameter → 0 the problem reduces to the Newtonian fluids performing the same motion.


2018 ◽  
Vol 57 (3) ◽  
pp. 1963-1969 ◽  
Author(s):  
Nauman Raza ◽  
M. Abdullah ◽  
Asma Rashid Butt ◽  
Aziz Ullah Awan ◽  
Ehsan Ul Haque

2017 ◽  
Vol 10 (3) ◽  
pp. 597-613 ◽  
Author(s):  
Cuicui Ji ◽  
Zhizhong Sun

AbstractThis article is intended to fill in the blank of the numerical schemes with second-order convergence accuracy in time for nonlinear Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. A linearized difference scheme is proposed. The time fractional-order derivative is discretized by second-order shifted and weighted Gr¨unwald-Letnikov difference operator. The convergence accuracy in space is improved by performing the average operator. The presented numerical method is unconditionally stable with the global convergence order of in maximum norm, where τ and h are the step sizes in time and space, respectively. Finally, numerical examples are carried out to verify the theoretical results, showing that our scheme is efficient indeed.


2017 ◽  
Vol 815 ◽  
pp. 26-59 ◽  
Author(s):  
C. Vamsi Krishna ◽  
Namrata Gundiah ◽  
Jaywant H. Arakeri

Unsteady flows in highly curved geometries are of interest in many engineering applications and also in physiological flows. In this study, we use flow visualization and computational fluid dynamics to study unsteady flows in a highly curved tube ($\unicode[STIX]{x1D6FD}=0.3$) with square cross-section; here, $\unicode[STIX]{x1D6FD}$ is the ratio of the half edge length to the radius of curvature of the tube. To explore the combined effects of curvature and pulsatility, we use a single flow pulse of duration $T$ and peak area averaged axial velocity $U_{p(max)}$, which are independently varied to investigate a range of Dean and Womersley numbers. This range includes cases corresponding to flows in the ascending aorta. We observe radially inward moving secondary flows which have the structure of wall jets on the straight walls; their subsequent collision on the inner wall leads to a re-entrant radially outward moving jet. The wall jet arises due to an imbalance between the centrifugal force and the radial pressure gradient. During the deceleration phase, the low-axial-momentum fluid accumulated in the jet reverses direction and leads to flow separation near the inner wall. We use boundary layer equations to derive scales, which have not been reported earlier, for the secondary flow velocities, the wall shear stress components and the distance ($\hat{P}$) traversed by the secondary flow structures in the transverse plane. We show that $\hat{P}$ predicts the movement of vortical structures until collision. In the limit $\unicode[STIX]{x1D6FD}\rightarrow 0$, the Reynolds number based on this secondary flow velocity scale asymptotes to the secondary streaming Reynolds number proposed by Lyne (J. Fluid Mech., vol. 45 (01), 1971, pp. 13–31) in loosely curved pipes. The magnitude of the secondary flow velocity is high and ${\sim}40\,\%$ of $U_{p(max)}$ for physiological flow conditions. We show that the flow separation on the inner wall has origins in the secondary flow, which was reported in a few earlier studies, and is not due to the axial pressure gradient in the tube as proposed earlier. The wall shear stress components, hypothesized to be important in arterial mechanobiology, may be estimated using our scaling relations for geometries with different curvatures and varying pulsatilities.


Author(s):  
Khaled J. Hammad

The influence of inflow conditions and human blood rheology on the wall shear stress distribution in a confined separated and reattached flow region is investigated. The governing mass and momentum conservation equations along with the Herschel-Bulkley rheological model are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the influence of uniform and fully-developed inflow velocity profiles on the wall shear stress (WSS) characteristics using hemorheological models that account for the yield stress and shear-thinning non-Newtonian characteristics of human blood. The highest WSS or WSSmax, is always observed inside the flow separation region at a location corresponding to that of the corner vortex center. Uniform inflow results in higher WSSmax values in comparison with fully-developed inflow for moderate upstream flow restrictions. The opposite trend is observed for severe flow restrictions. Uniform inflow always results in smaller flow separation regions and WSSmax values at locations closer to the flow restriction plane. The yield shear-thinning hemorheological model always results in the highest observed peak WSS. The yield stress impact on WSS distribution is most pronounced in the case of severe restrictions to the flow.


Sign in / Sign up

Export Citation Format

Share Document