scholarly journals OSCILLATING UNIVERSE AS EIGENSOLUTIONS OF COSMOLOGICAL SCHRÖDINGER EQUATION

2000 ◽  
Vol 09 (02) ◽  
pp. 143-154 ◽  
Author(s):  
S. CAPOZZIELLO ◽  
A. FEOLI ◽  
G. LAMBIASE

We propose a cosmological model which could explain, in a very natural way, the apparently periodic structures of the universe, as revealed in a series of recent observations. Our point of view is to reduce the cosmological Friedman–Einstein dynamical system to a sort of Schrödinger equation whose bound eigensolutions are oscillating functions. Taking into account the cosmological expansion, the large scale periodic structure could be easily recovered considering the amplitudes and the correlation lengths of the galaxy clusters.

2003 ◽  
Vol 12 (08) ◽  
pp. 1475-1485 ◽  
Author(s):  
ANTONIO FEOLI

Starting from the apparently periodic structures of the universe, revealed in a series of recent observations, we suppose that Dark Matter is composed of a quantum particle of very low mass and is clustered around the luminous matter of galaxies. We reduce the cosmological Friedman–Einstein dynamical system to a sort of Schrödinger equation for this quantum particle with a simple first quantization scheme. Comparing the eigen-solutions of this Cosmological Schrödinger Equation with the experimental periodic large scale structure, we predict the possible value of the mass of the dark quantum particle in two remarkable cases.


2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


2020 ◽  
Vol 492 (3) ◽  
pp. 4268-4282 ◽  
Author(s):  
Adam Soussana ◽  
Nora Elisa Chisari ◽  
Sandrine Codis ◽  
Ricarda S Beckmann ◽  
Yohan Dubois ◽  
...  

ABSTRACT The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to active galactic nuclei (AGN) feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback, respectively. We measure intrinsic alignments in three dimensions and in projection at $z$ = 0 and $z$ = 1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy ‘twins’ across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.


The interaction representation has recently been introduced into the quantum theory of fields by Tomonaga and Schwinger. Applications of the theory to interacting meson-photon fields have led to apparent difficulties in determining invariant interaction Hamiltonians. Another troublesome feature is the necessity of verifying the integrability conditions of the so-called generalized Schrödinger equation. In the present paper the theory of the interaction representation is presented from a different point of view. It is shown that if two field operators with the same transformation character satisfy two different field equations, there is a unique unitary transformation connecting the field variables on any space-like surface given such a correspondence on one given space-like surface. A differential equation for determining this unique unitary transformation is found which is the analogue of Tomonaga’s generalized Schrödinger equation. This gives directly and simply an invariant interaction Hamiltonian and renders unnecessary the explicit verification of the integrability of the Schrödinger equation, since this is known to have a unique solution. To illustrate the simplification introduced by the present theory, the interaction Hamiltonian for the interacting scalar meson-photon fields is calculated. The result is the same as that obtained by Kanesawa & Tomonaga, but it is obtained by a straightforward calculation without the need to add terms to make the Hamiltonian an invariant.


1999 ◽  
Vol 14 (28) ◽  
pp. 4473-4490 ◽  
Author(s):  
V. A. SAVCHENKO ◽  
T. P. SHESTAKOVA ◽  
G. M. VERESHKOV

A way of constructing mathematically correct quantum geometrodynamics of a closed universe is presented. The resulting theory appears to be gauge-noninvariant and thus consistent with the observation conditions of a closed universe, by that being considerably distinguished from the traditional Wheeler–DeWitt one. For the Bianchi-IX cosmological model it is shown that a normalizable wave function of the universe depends on time, allows the standard probability interpretation and satisfies a gauge-noninvariant dynamical Schrödinger equation. The Wheeler–DeWitt quantum geometrodynamics is represented a singular, BRST-invariant solution to the Schrödinger equation having no property of normalizability.


2018 ◽  
Vol 14 (A30) ◽  
pp. 295-298
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Arthur Kosowsky ◽  
Sayan Mandal ◽  
Alberto Roper Pol

AbstractBlazar observations point toward the possible presence of magnetic fields over intergalactic scales of the order of up to ∼1 Mpc, with strengths of at least ∼10−16 G. Understanding the origin of these large-scale magnetic fields is a challenge for modern astrophysics. Here we discuss the cosmological scenario, focussing on the following questions: (i) How and when was this magnetic field generated? (ii) How does it evolve during the expansion of the universe? (iii) Are the amplitude and statistical properties of this field such that they can explain the strengths and correlation lengths of observed magnetic fields? We also discuss the possibility of observing primordial turbulence through direct detection of stochastic gravitational waves in the mHz range accessible to LISA.


1997 ◽  
Vol 12 (16) ◽  
pp. 1127-1130 ◽  
Author(s):  
M. D. Pollock

By demanding the existence of a globally invariant ground-state solution of the Wheeler–De Witt equation (Schrödinger equation) for the wave function of the Universe Ψ, obtained from the heterotic superstring theory, in the four-dimensional Friedmann space-time, we prove that the cosmological vacuum energy has to be zero.


1986 ◽  
Vol 64 (4) ◽  
pp. 507-513 ◽  
Author(s):  
Yutaka Uchida ◽  
Kazunari Shibata

Characteristic behavior of cosmic jets predicted by a magnetodynamic mechanism proposed by Uchida and Shibata is discussed in terms of recent observational results of bipolar flows from star-forming regions as examples of low-energy cases. The theoretical model considers the twisting-up of part of the large-scale magnetic field with the driving mechanism being the contracting rotation of the accretion disk around the gravitating center. The twisted field screws out the mass from the surface layers of the disk along the large-scale external field, explaining the observed tuning-fork type of distribution of the cold CO bipolar flows, gradual acceleration of the flows from the vicinity of the disk, and the helical velocity field in the outflows, all of which are not easy to explain by previous hypotheses assuming the wind and blast from the central object. Prospects of application of this mechanism to high-energy jets from active galactic nuclei or such peculiar objects in the galaxy like SS433 or Sco X-1 are discussed from the point of view of the similarity inherent in the mechanism.


Sign in / Sign up

Export Citation Format

Share Document