X-RAY SPECTRAL ANALYSIS OF SU UMa TYPE DWARF NOVAE OBSERVED WITH ROSAT

2003 ◽  
Vol 12 (04) ◽  
pp. 739-755 ◽  
Author(s):  
GÜLNUR ÝKİS GÜN ◽  
E. NİHAL ERCAN

X-ray spectral parameters were determined for eight SU UMa type Dwarf Novae observed with the ROSAT PSPC. The raw data were fitted with various spectral models and the best fit spectral models are found to be that of Raymond–Smith and Thermal Bremsstrahlung. The best fit temperatures were estimated to be between kT ~ 1.1-1.8 keV while the Column Densities were found to be between NH ~ 2.4×1020-4.1×1020 cm -2. The estimated 0.1-2.4 keV fluxes were in the range of log FX=-13 to -11 ergs cm-2 s-1. FX/F UV and FX/F opt rates were calculated to be between ~0.09 and ~0.37. This shows that most of the energy is radiated in the Optical and Ultraviolet band from the accretion disk in the quiescent state. Many of the SU UMa type Dwarf Novae show an Ultraviolet lag in their outburst spectrum, the Coronal Siphon Flow Model of Meyer and Meyer-Hofmeister may explain this phenomenon. This model proposes a corona at the boundary layer of a system when it is a quiescent state and suggests that some parts of the X-rays come from the corona. For these reasons, the equations of this model were applied to the results of the spectral analysis. Using this model, the mass accretion rates, the mass evaporation rates, and the radii of the coronas were calculated to be ~10-12.3-10-11.3 M⊙ yr -1, ~10-6.5-10-5.5 g cm -2 s -1 and ~109.1-109.9 cm , respectively. The pressures in the coronas were less than ~1200 g cm -2 s -1 for (z) up to ~10×109 cm . The obtained values suggest that the Corona model can indeed operate in SU UMa type Dwarf Novae.

2005 ◽  
Vol 14 (07) ◽  
pp. 1185-1193 ◽  
Author(s):  
GÜLNUR İKİS GÜN

X-ray spectral parameters were determined for WZ Sge observed with the ROSAT PSPC. The raw data were fitted with various spectral models and the best fit spectral models are found to be that of Raymond–Smith and Thermal Bremsstrahlung. The best fit temperature was estimated to be kT ~ 2.17 keV while the column density was found to be NH ~ 2.8 × 1020 cm -2. The estimated 0.1–2.4 keV flux was in the range of log F = -12 ergs cm -2 s -1. WZ Sge stars show long outburst recurrence times and weak X-ray emissions during the quiescence states. It is possible to lengthen repetition cycles by decreasing the viscosity parameter (α); however there still remains the question why α is so small, specifically for these objects. The Coronal Siphon Model of Meyer and Meyer–Hofmeister1 can explain these phenomenons successfully. For this reason, the equations of this model were applied to the results of spectral analysis. Using this model, the mass accretion rate, mass evaporation rate in corona and the radius of the corona were calculated to be 1014.48 gr yr-1, 10-5.4 gr cm-2 s-1 and 109.7 cm, respectively. The obtained values suggest that the corona model can indeed operate in WZ Sge system.


1989 ◽  
Vol 134 ◽  
pp. 161-166
Author(s):  
Claude R. Canizares ◽  
Julia L. White

We present mean spectral parameters for various ensembles of quasars observed with the Einstein Observatory Imaging Proportional Counter (IPC). Our sample contains 71 optically or radio selected quasars with 0.1 < z < 3.5, Galactic NH < 1021 cm−2, total counts of 30 −500, and IPC gain < 19. Quasars are grouped into ensembles according to radio properties (Flat Radio Spectrum [FRS], Steep Radio Spectrum [SRS] or Radio Quiet [RQ]), and either redshift or X-ray luminosity, lx. We find a clear correlation between radio properties and α. FRS quasars have α∼0.4, SRS quasars have α∼0.7 and RQ quasars have α ∼1–1.4. There is no evidence for a dependence of α on z nor, for the FRS and SRS ensembles, on lx over nearly three decades. FRS quasars with 2.0 < z < 3.5 have just as flat mean spectra as those with low z, implying that a single power law, which is flatter than the canonical one with α ∼ 0.65, continues into the 1–10 keV band (in which the observed softer X-rays were emitted). Unfortunately, the results for high redshift and high lx RQ quasars are ambiguous because of systematic uncertainties in the ensemble means. Thus we cannot test the two-component spectral hypothesis of Wilkes and Elvis for these objects. SRS X-ray spectra could be steeper than FRS spectra because of the mixing of two components, although a single intrinsically steeper spectrum is easier to reconcile with the absence of z dependence. The uncertainty in a for RQ quasars with high z leaves open the important question of their contribution to the cosmic X-ray background.


1969 ◽  
Vol 47 (23) ◽  
pp. 2651-2666 ◽  
Author(s):  
A. J. Baxter ◽  
B. G. Wilson ◽  
D. W. Green

An experiment is described to investigate cosmic X rays in the energy range 0.25–12 keV. The data-recovery system and methods of spectral analysis are considered. Results are presented for the energy spectrum of the diffuse X-ray component and its distribution over the northern sky down to 1.6 keV with a limited extension at 0.27 keV.In the energy range 1.6 to 12 keV, the spectrum is represented by:[Formula: see text]although separate analyses indicate a flattening below 4.5 keV to give:[Formula: see text]and[Formula: see text]At the lowest energies, the flux appears to increase more rapidly and exhibits some anisotropy in arrival directions related to the gross galactic structure. Spectral characteristics of the Crab Nebula and Cygnus X-2 have also been determined.


10.14311/1474 ◽  
2011 ◽  
Vol 51 (6) ◽  
Author(s):  
E. Litzinger ◽  
K. Pottschmidt ◽  
J. Wilms ◽  
S. Suchy ◽  
R. E. Rothschild ◽  
...  

We present an analysis of the X-ray spectra of the young, Crab-like pulsar PSR B1509–58 (pulse period P ~ 151ms) observed by RXTE over 14 years since the beginning of the mission in 1996. The uniform dataset is especially well suited for studying the stability of the spectral parameters over time as well as for determining pulse phase resolved spectral parameters with high significance. The phase averaged spectra as well as the resolved spectra can be well described by an absorbed power law.


1994 ◽  
Vol 159 ◽  
pp. 317-317
Author(s):  
M. Bałucińska-Church ◽  
L. Piro ◽  
H. Fink ◽  
F. Fiore ◽  
M. Matsuoka ◽  
...  

SummaryWe report results of an international UV – X-ray campaign in 1990–1992 involving the IUE, Rosat and Ginga satellites to observe E1615+061, a Seyfert 1 galaxy with peculiar spectral and intensity behaviour over the last 20 years. The source has been found to be stable in its medium state during the observations. The Ginga (1–20 keV) spectrum of E1615+061 is adequately represented by a simple power law with a photon index α = 1.8 ± 0.1. However, α ∼ 2, as expected for the intrinsic power law component in a reflection model, cannot be ruled out statistically. The Rosat PSPC (0.1–2 keV) spectra collected during the All Sky Survey and the AO-1 phase can be well-described by a simple power law (α = 2.2 ± 0.1) with cold absorber (NH = 3.5 ± 0.3 · 10λ20 H/cmλ2). Both the photon index being significantly different than that obtained from the Ginga spectrum and the column density being smaller than the galactic column (NH ∼ 4.2 · 10λ20 H/cmλ2) give an indication of a soft excess over and above the hard component seen in the Ginga spectrum. E1615+061 has been observed with IUE in 1990 and in 1992. The source was stable and the colour excess E(B-V) derived from the data = 0.1 is in good agreement with that expected from the galactic absorption.To parameterise the soft excess we fitted the Rosat data with a two-component model consisting of a power law, and a blackbody or thermal bremsstrahlung, with a single galactic absorption term. The column density and the slope of the power law were kept constant. The blackbody temperature was 80 ± 6 eV and 63 ± 12 eV for photon index equal to 1.8 and 2.0, respectively, whereas the bremsstrahlung temperature was 220 ± 40 eV and 115 ± 30 eV for the two cases.An attempt to model the soft excess seen in the Rosat PSPC spectrum has been made assuming that the soft excess is the high energy tail of a disc spectrum which peaks in the UV part of the spectrum. Additionally it was assumed that there is a hard component contributing to the spectrum from UV to X-rays with parameters as described by the Ginga spectrum. The best fit parameters: the mass of the central source and the mass accretion rate were around 5 ± 1 · 10λ6 M⊙ and 0.2 ± 0.04 M⊙/yr, respectively.Our modelling shows that the soft X-ray excess can be described (χredλ2 < 1.2) as the high energy tail of an accretion disk spectrum if the intrinsic power law is quite steep (α = 2). The main contribution to the residuals in the Rosat PSPC range comes from 0.3–0.6 keV, with a tendency for these residuals to increase when the slope gets flatter. The accretion luminosity is ∼ 6.5 · 10λ44 erg/s for the best fit parameters, i.e. about the Eddington luminosity.


2020 ◽  
Vol 386 (4) ◽  
pp. 6-12
Author(s):  
R. T. Abdraimov ◽  
B. E. Vintaykin ◽  
P. A. Saidakhmetov ◽  
N. K. Madiyarov ◽  
M. A. Abdualiyeva

Algorithms for solving typical mineralogical problems associated with quantitative x-ray spectral analysis and quantitative x-ray phase analysis using the program “Origin” are developed. The calculation of the areas and midpoint of spectral lines using the tabular processor of the program “Origin” is considered. Various approaches to determining the parameters of spectral lines using the least squares method using the standard functions of the program “Origin” were tested. The creation of a user function for approximation of diffraction maxima by the Cauchy function taking into account the doublet character of Ka series of x-rays is also considered. Various built-in algorithms for smoothing functions (based on averaging, polynomial approximation and Fourier analysis – synthesis) were tested to find weak diffraction maxima against strong noise; optimal schemes for the application of these algorithms were found. The considered algorithms can be applied in universities when processing the results of laboratory works on the topics "Analysis of spectra of emission of atoms", "Quantitative x-ray spectral analysis" and "Quantitative x-ray phase analysis".


2005 ◽  
Vol 626 (1) ◽  
pp. 396-410 ◽  
Author(s):  
Dirk Pandel ◽  
France A. Cordova ◽  
Keith O. Mason ◽  
William C. Priedhorsky

2020 ◽  
Vol 496 (1) ◽  
pp. 197-205
Author(s):  
Prince Sharma ◽  
Rahul Sharma ◽  
Chetana Jain ◽  
Anjan Dutta

ABSTRACT This work presents the broad-band time-averaged spectral analysis of neutron star (NS) low-mass X-ray binary, XTE J1710−281 by using the Suzaku archival data. The source was in a hard or an intermediate spectral state during this observation. This is the first time that a detailed spectral analysis of the persistent emission spectra of XTE J1710−281 has been done up to 30 keV with improved constraints on its spectral parameters. By simultaneously fitting the X-ray Imaging Spectrometer (0.6–9.0 keV) and the HXD-PIN (15.0–30.0 keV) data, we have modelled the persistent spectrum of the source with models comprising a soft component from accretion disc and/or NS surface/boundary layer and a hard Comptonizing component. The 0.6–30 keV continuum with neutral absorber can be described by a multicolour disc blackbody with an inner disc temperature of kTdisc = 0.28 keV, which is significantly Comptonized by the hot electron cloud with electron temperature of kTe ≈ 5 keV and described by photon index Γ = 1.86. A more complex three-component model comprising a multicolour disc blackbody ≈0.30 keV, single-temperature blackbody ≈0.65 keV, and Comptonization from the disc, partially absorbed (about 38 per cent) by an ionized absorber (log(ξ) ≈ 4) describes the broad-band spectrum equally well.


2020 ◽  
Vol 499 (2) ◽  
pp. 1998-2006
Author(s):  
C Panagiotou ◽  
I E Papadakis ◽  
E S Kammoun ◽  
M Dovčiak

ABSTRACT NGC 5548 was recently monitored intensively from NIR to X-rays as part of the STORM campaign. Its disc emission was found to lag behind the observed X-rays, while the measured time lag was increasing with wavelength. These results are consistent with the assumption that short-term variability in AGN emission is driven by the X-ray illumination of the accretion disc. In this work, we studied the power spectrum of UV/optical and X-ray emission of NGC 5548, using the data of the STORM campaign as well as previous Swift data, in order to investigate the relation between the UV/optical and X-ray variability and to examine its consistency with the above picture. We demonstrate that even the power spectrum results are compatible with a standard disc being illuminated by X-rays, with low accretion rates, but the details are not entirely consistent with the results from the modelling of the ‘τ versus λ’ relation. The differences indicate that the inner disc might be covered by a ‘warm corona’ which does not allow the detection of UV/optical emission from the inner disc. Finally, we found strong evidence that the UV emission of NGC 5548 is not stationary.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
E. Berthonnaud ◽  
R. Hilmi ◽  
J. Dimnet

The goal of this paper is to access to pelvis position and morphology in standing posture and to determine the relative locations of their articular surfaces. This is obtained from coupling biplanar radiography and bone modeling. The technique involves different successive steps. Punctual landmarks are first reconstructed, in space, from their projected images, identified on two orthogonal standing X-rays. Geometric models, of global pelvis and articular surfaces, are determined from punctual landmarks. The global pelvis is represented as a triangle of summits: the two femoral head centers and the sacral plateau center. The two acetabular cavities are modeled as hemispheres. The anterior sacral plateau edge is represented by an hemi-ellipsis. The modeled articular surfaces are projected on each X-ray. Their optimal location is obtained when the projected contours of their models best fit real outlines identified from landmark images. Linear and angular parameters characterizing the position of global pelvis and articular surfaces are calculated from the corresponding sets of axis. Relative positions of sacral plateau, and acetabular cavities, are then calculated. Two hundred standing pelvis, of subjects and scoliotic patients, have been studied. Examples are presented. They focus upon pelvis orientations, relative positions of articular surfaces, and pelvis asymmetries.


Sign in / Sign up

Export Citation Format

Share Document