scholarly journals ACCELERATED EXPANSION IN MODIFIED GRAVITY WITH A YUKAWA-LIKE TERM

2007 ◽  
Vol 16 (04) ◽  
pp. 687-697 ◽  
Author(s):  
K. ATAZADEH ◽  
H. R. SEPANGI

We discuss the Palatini formulation of modified gravity including a Yukawa-like term. It is shown that in this formulation, the Yukawa term offers an explanation for the current exponential accelerated expansion of the universe and reduces to the standard Friedmann cosmology in the appropriate limit. We then discuss the scalar-tensor formulation of the model as a metric theory and show that the Yukawa term predicts a power-law acceleration at late-times. The Newtonian limit of the theory is also discussed in context of the Palatini formalism.

2009 ◽  
Vol 24 (22) ◽  
pp. 1785-1792 ◽  
Author(s):  
B. NAYAK ◽  
L. P. SINGH

The present-day accelerated expansion of the universe is naturally addressed within the Brans–Dicke theory just by using holographic dark energy model with inverse of Hubble scale as IR cutoff and power law temporal behavior of scale factor. It is also concluded that if the universe continues to expand, then one day it might be completely filled with dark energy.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
B. Mishra ◽  
Sankarsan Tarai ◽  
S. K. Tripathy

Dynamics of an anisotropic universe is studied inf(R,T)gravity using a rescaled functionalf(R,T), whereRis the Ricci Scalar andTis the trace of energy-momentum tensor. Three models have been constructed assuming a power law expansion of the universe. Physical features of the models are discussed. The model parameters are constrained from a dimensional analysis. It is found from the work that the anisotropic Bianchi typeVIh(BVIh) model in the modified gravity generally favours a quintessence phase when the parameterhis either-1or0. We may not get viable models in conformity with the present day observation forh=1.


2012 ◽  
Vol 27 (18) ◽  
pp. 1250100 ◽  
Author(s):  
A. KHODAM-MOHAMMADI ◽  
M. MALEKJANI ◽  
M. MONSHIZADEH

In this work, we reconstruct the f(R) modified gravity for different ghost and generalized-ghost dark energy (DE) models in FRW flat universe, which describes the accelerated expansion of the universe. The equation of state and deceleration parameter of reconstructed f(R) gravity have been calculated. The equation of state and deceleration parameter of reconstructed f(R)-ghost/generalized-ghost DE, have been calculated. We show that the corresponding f(R) gravity of ghost/generalized-ghost DE model can behave like phantom or quintessence. Also the transition between deceleration to acceleration regime is indicated by deceleration parameter diagram for reconstructed f(R) generalized-ghost DE model.


2013 ◽  
Vol 22 (14) ◽  
pp. 1350083 ◽  
Author(s):  
UMANANDA DEV GOSWAMI ◽  
KABITA DEKA

f(R) gravity models belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as a manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by redefinition of model's variable. The conformal transformation of the action from Jordan frame to Einstein frame makes the scalar degree of freedom more explicit and can be studied conveniently. We have investigated the features of the scalar degree of freedoms and the consequent cosmological implications of the power-law (ξRn) and the Starobinsky (disappearing cosmological constant) f(R) gravity models numerically in the Einstein frame. Both the models show interesting behavior of their scalar degree of freedom and could produce the accelerated expansion of the universe in the Einstein frame with the negative equation of state of the scalar field. However, the scalar field potential for the power-law model is the well-behaved function of the field, whereas the potential becomes flat for higher value of field in the case of the Starobinsky model. Moreover, the equation of state of the scalar field for the power-law model is always negative and less than -1/3, which corresponds to the behavior of the dark energy, that produces the accelerated expansion of the universe. This is not always the case for the Starobinsky model. At late times, the Starobinsky model behaves as cosmological constant Λ as behaves by power-law model for the values of n → 2 at all times.


2020 ◽  
Vol 493 (2) ◽  
pp. 2085-2100
Author(s):  
Michal Vraštil ◽  
Salman Habib

ABSTRACT The accelerated expansion of the Universe poses a major theoretical puzzle. Although the assumption of a non-zero cosmological constant provides a minimal extension of general relativity that is consistent with observational data, many theories of modified gravity have been suggested as possible alternatives. Predictions of structure formation for these models in the fully non-linear regime are very expensive and it is difficult, if not impossible, to explore such a huge space of models and parameters using high-resolution N-body simulations. Even in the mildly non-linear regime, perturbative methods can become extremely complex. We explore whether simplified dynamical approximations, applicable for a certain set of cosmological probes, can be used to investigate models of modified gravity with acceptable accuracy in the latter instance. For the case of chameleon gravity, we find that these methods can indeed be used to explore the region around the baryon acoustic oscillation scale, $k\sim 0.1~h\, \text{Mpc}^{-1}$ but not much further.


2018 ◽  
Vol 619 ◽  
pp. A122 ◽  
Author(s):  
Alex Ho ◽  
Max Gronke ◽  
Bridget Falck ◽  
David F. Mota

Multiple modifications of general relativity (GR) have been proposed in the literature in order to understand the nature of the accelerated expansion of the Universe. However, thus far all the predictions of GR have been confirmed with constantly increasing accuracy. In this work, we study the imprints of a particular class of models – “screened” modified gravity theories – on cosmic filaments. We have utilized the N-body code ISIS/RAMSES to simulate the symmetron model and the Hu–Sawicky f(R) model, and we post-process the output with DisPerSE to identify the filaments of the cosmic web. We investigated how the global properties of the filaments – such as their lengths, masses, and thicknesses – as well as their radial density and speed profiles change under different gravity theories. We find that filaments are, on average, shorter and denser in modified gravity models compared to in ΛCDM. We also find that the speed profiles of the filaments are enhanced, consistent with theoretical expectations. Overall, our results suggest that cosmic filaments can be an effective complementary probe of screened modified gravity theories on Mpc scales.


2003 ◽  
Vol 12 (03) ◽  
pp. 445-460 ◽  
Author(s):  
S. SEN ◽  
T. R. SESHADRI

Recent cosmological observations reveal that we are living in a flat accelerated expanding universe. In this work we have investigated the nature of the potential compatible with the power law expansion of the universe in a self interacting Brans–Dicke cosmology with a perfect fluid background and have analyzed whether this potential supports the accelerated expansion. It is found that positive power law potential is relevant in this scenario and can drive accelerated expansion for negative Brans–Dicke coupling parameter ω. The evolution of the density perturbation is also analyzed in this scenario and is seen that the model allows growing modes for negative ω.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


Sign in / Sign up

Export Citation Format

Share Document