THE ROLE OF THE PLANCK SCALE IN BLACK HOLE RADIANCE

2008 ◽  
Vol 17 (03n04) ◽  
pp. 489-494
Author(s):  
IVÁN AGULLÓ ◽  
JOSÉ NAVARRO-SALAS ◽  
GONZALO J. OLMO ◽  
LEONARD PARKER

Lorentz invariance plays a pivotal role in the derivation of the Hawking effect, which crucially requires an integration in arbitrarily small distances or, equivalently, in unbounded energies. New physics at the Planck scale could, therefore, potentially modify the emission spectrum. We argue, however, that the kinematic invariance can be deformed in such a way that the thermal spectrum remains insensitive to trans-Planckian physics.

2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2012 ◽  
Vol 27 (25) ◽  
pp. 1230024 ◽  
Author(s):  
TEPPEI KATORI

Violation of Lorentz invariance and CPT symmetry is a predicted phenomenon of Planck-scale physics. Various types of data are analyzed to search for Lorentz violation under the Standard Model Extension (SME) framework, including neutrino oscillation data. MiniBooNE is a short-baseline neutrino oscillation experiment at Fermilab. The measured excesses from MiniBooNE cannot be reconciled within the neutrino Standard Model (νSM); thus it might be a signal of new physics, such as Lorentz violation. We have analyzed the sidereal time-dependence of MiniBooNE data for signals of the possible breakdown of Lorentz invariance in neutrinos. In this brief review, we introduce Lorentz violation, the neutrino sector of the SME and the analysis of short-baseline neutrino oscillation experiments. We then present the results of the search for Lorentz violation in MiniBooNE data. This review is based on the published result.


Universe ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 78
Author(s):  
C. Das ◽  
L. Laperashvili ◽  
H. Nielsen ◽  
B. Sidharth

Assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: (a) the first Electroweak (EW) vacuum at v 1 ≈ 246 GeV—“true vacuum”, and (b) the second Planck scale “false vacuum” at v 2 ∼ 10 18 GeV. In these vacua, we investigated different topological defects. The main aim of the paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the f ( R ) gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a “hedgehog”—global monopole, that has been “swallowed” by the black-hole with mass core M B H ∼ 10 18 GeV and radius δ ∼ 10 − 21 GeV − 1 . Considering the results of the hedgehog lattice theory in the framework of the S U ( 2 ) Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs’ confinement phase ( T c ∼ 10 18 GeV). This result gave us the possibility to conclude that the SM shows a new physics (with contributions of the S U ( 2 ) -triplet Higgs bosons) at the scale ∼10 TeV. This theory predicts the stability of the EW-vacuum and the accuracy of the MPP.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850022 ◽  
Author(s):  
B. G. Sidharth ◽  
C. R. Das ◽  
L. V. Laperashvili ◽  
H. B. Nielsen

In the present paper, assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: the first Electroweak (EW) vacuum at [Formula: see text][Formula: see text]GeV — “true vacuum”, and the second Planck scale “false vacuum” at [Formula: see text] GeV. In these vacua, we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the [Formula: see text] gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a “hedgehog” — global monopole, that has been “swallowed” by the black-hole with mass core [Formula: see text][Formula: see text]GeV and radius [Formula: see text][Formula: see text]GeV[Formula: see text]. Considering the results of the hedgehog lattice theory in the framework of the [Formula: see text] Yang–Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs confinement phase ([Formula: see text][Formula: see text]GeV). This result gave us the possibility to conclude that the SM shows a new physics with contributions of the [Formula: see text]-triplet Higgs bosons at the scale [Formula: see text][Formula: see text]TeV. Theory predicts the stability of the EW-vacuum and the accuracy of the MPP.


2007 ◽  
Vol 22 (24) ◽  
pp. 1821-1828 ◽  
Author(s):  
JINGYI ZHANG

In this paper, we first rewrite the Lagrangian density of the electromagnetic field corresponding to the source with electric and magnetic charges. Then, in the background of Reissner–Nordström black hole spacetime, we extend the Parikh–Wilczek tunneling framework and calculate the emission spectrum of the outgoing particles with electric and magnetic charges. For the sake of simplicity, we only consider the case that the rate of electric and magnetic charge of the emission particle is constant and equals that of the black hole. In this case, the emission spectrum deviates from the pure thermal spectrum, but it is consistent with an underlying unitary theory and takes the same functional form as that of the uncharged massless particles. Finally, a discussion about the result is presented.


2006 ◽  
Vol 21 (01) ◽  
pp. 41-48 ◽  
Author(s):  
MICHELE ARZANO

The emergence of quantum-gravity induced corrective terms for the probability of emission of a particle from a black hole in the Parikh–Wilczek tunneling framework is studied. It is shown, in particular, how corrections might arise from modifications of the surface gravity due to near horizon Planck-scale effects. Our derivation provides an example of the possible linking between Planck-scale departures from Lorentz invariance and the appearance of higher order quantum gravity corrections in the black-hole entropy-area relation.


Author(s):  
C.R. Das ◽  
L.V. Laperashvili ◽  
H.B. Nielsen ◽  
B.G. Sidharth

Assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: a) the first Electroweak (EW) vacuum at $v_1\approx 246$ GeV—“true vacuum”, and b) the second Planck scale “false vacuum” at $v_2 \sim 10^{18}$ GeV. In these vacua, we investigated different topological defects. The main aim of the paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the $f(R)$ gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a “hedgehog”—global monopole, that has been “swallowed” by the black-hole with mass core $M_{BH}\sim 10^{18}$ GeV and radius $\delta\sim 10^{-21}$ GeV$^{-1}$. Considering the results of the hedgehog lattice theory in the framework of the $SU(2)$ Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs’ confinement phase ($T_c\sim 10^{18}$ GeV). This result gave us the possibility to conclude that the SM shows a new physics (with contributions of the $SU(2)$-triplet Higgs bosons) at the scale $\sim 10$ TeV. This theory predicts the stability of the EW-vacuum and the accuracy of the MPP.


2020 ◽  
Author(s):  
Vitaly Kuyukov

In this paper, we analyze the singularity of a black hole based on a modification of general relativity. There is an equilibrium condition on the Planck scale. This makes it possible to study the thermodynamics of the singularity of a black hole.


Sign in / Sign up

Export Citation Format

Share Document