scholarly journals CAN WE SEE NAKED SINGULARITIES?

2009 ◽  
Vol 18 (14) ◽  
pp. 2083-2092
Author(s):  
SHRIRANG S. DESHINGKAR

We study singularities which can form in a spherically symmetric gravitational collapse of a general matter field obeying weak energy condition. We show that null naked singularities that form in such a collapse can never be observed. No energy can come out of these singularities; thus they will have no physical consequences outside. As this happens for any null singularity, we do not need to assume specific form of matter and establish role of initial data. Hence our result is very general.

2012 ◽  
Vol 21 (08) ◽  
pp. 1250066 ◽  
Author(s):  
PANKAJ S. JOSHI ◽  
DANIELE MALAFARINA ◽  
RAVINDRA V. SARAYKAR

Here we investigate the genericity and stability aspects for naked singularities and black holes that arise as the final states for a complete gravitational collapse of a spherical massive matter cloud. The form of the matter considered is a general Type I matter field, which includes most of the physically reasonable matter fields such as dust, perfect fluids and such other physically interesting forms of matter widely used in gravitation theory. Here, we first study in some detail the effects of small pressure perturbations in an otherwise pressure-free collapse scenario, and examine how a collapse evolution that was going to the black hole endstate would be modified and go to a naked singularity, once small pressures are introduced in the initial data. This allows us to understand the distribution of black holes and naked singularities in the initial data space. Collapse is examined in terms of the evolutions allowed by Einstein equations, under suitable physical conditions and as evolving from a regular initial data. We then show that both black holes and naked singularities are generic outcomes of a complete collapse, when genericity is defined in a suitable sense in an appropriate space.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 169
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Farook Rahaman ◽  
Marius-Mihai Cazacu ◽  
Andromahi Spanou ◽  
...  

The energy-momentum localization for a new four-dimensional and spherically symmetric, charged black hole solution that through a coupling of general relativity with non-linear electrodynamics is everywhere non-singular while it satisfies the weak energy condition, is investigated. The Einstein and Møller energy-momentum complexes have been employed in order to calculate the energy distribution and the momenta for the aforesaid solution. It is found that the energy distribution depends explicitly on the mass and the charge of the black hole, on two parameters arising from the space-time geometry considered, and on the radial coordinate. Further, in both prescriptions all the momenta vanish. In addition, a comparison of the results obtained by the two energy-momentum complexes is made, whereby some limiting and particular cases are pointed out.


2011 ◽  
Vol 20 (12) ◽  
pp. 2317-2335 ◽  
Author(s):  
KANG ZHOU ◽  
ZHAN-YING YANG ◽  
DE-CHENG ZOU ◽  
RUI-HONG YUE

We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.


2007 ◽  
Vol 22 (01) ◽  
pp. 65-74 ◽  
Author(s):  
RITUPARNO GOSWAMI ◽  
PANKAJ S. JOSHI

We construct and study here a class of collapsing scalar field models with a nonzero potential. The weak energy condition is satisfied by the collapsing configuration and it is shown that the end state of collapse could be either a black hole or a naked singularity. It is seen that physically it is the rate of collapse that governs these outcomes of the dynamical evolution. The implications for the cosmic censorship conjecture are discussed.


2002 ◽  
Vol 11 (02) ◽  
pp. 155-186 ◽  
Author(s):  
C. F. C. BRANDT ◽  
L.-M. LIN ◽  
J. F. VILLAS DA ROCHA ◽  
A. Z. WANG

Analytic spherically symmetric solutions of the Einstein field equations coupled with a perfect fluid and with self-similarities of the zeroth, first and second kinds, found recently by Benoit and Coley [Class. Quantum Grav.15, 2397 (1998)], are studied, and found that some of them represent gravitational collapse. When the solutions have self-similarity of the first (homothetic) kind, some of the solutions may represent critical collapse but in the sense that now the "critical" solution separates the collapse that forms black holes from the collapse that forms naked singularities. The formation of such black holes always starts with a mass gap, although the "critical" solution has homothetic self-similarity. The solutions with self-similarity of the zeroth and second kinds seem irrelevant to critical collapse. Yet, it is also found that the de Sitter solution is a particular case of the solutions with self-similarity of the zeroth kind, and that the Schwarzschild solution is a particular case of the solutions with self-similarity of the second kind with the index α=3/2.


2006 ◽  
Vol 15 (09) ◽  
pp. 1359-1371 ◽  
Author(s):  
K. D. PATIL ◽  
S. S. ZADE

We generalize the earlier studies on the spherically symmetric gravitational collapse in four-dimensional space–time to higher dimensions. It is found that the central singularities may be naked in higher dimensions but depend sensitively on the choices of the parameters. These naked singularities are found to be gravitationally strong that violate the cosmic censorship hypothesis.


2009 ◽  
Vol 18 (13) ◽  
pp. 2061-2082 ◽  
Author(s):  
S. HABIB MAZHARIMOUSAVI ◽  
O. GURTUG ◽  
M. HALILSOY

We present the generalization of a known theorem to generate static, spherically symmetric black hole solutions in higher-dimensional Lovelock gravity. Particular limits such as Gauss–Bonnet (GB) and Einstein–Hilbert (EH) in any dimension N yield all the solutions known to date with an energy–momentum. In our generalization, with special emphasis on third order Lovelock gravity, we have found two different class of solutions characterized by the matter field parameter. Several particular cases are studied and properties related to asymptotic behaviors are discussed. Our general solution, which covers topological black holes as well, splits naturally into distinct classes such as Chern–Simon (CS) and Born–Infeld (BI) in higher-dimensions. The occurence of naked singularities is studied and it is found that the space–time behaves nonsingularly in the quantum-mechanical sense when it is probed with quantum test particles. The theorem is extended to cover Bertotti–Robinson (BR) type solutions in the presence of the GB parameter alone. Finally, we prove also that extension of the theorem for a scalar–tensor source of higher dimensions (N > 4) fails to work.


2012 ◽  
Vol 21 (04) ◽  
pp. 1250033 ◽  
Author(s):  
ERNESTO F. EIROA ◽  
CLAUDIO SIMEONE

In this work, shells are mathematically constructed by applying the cut and paste procedure to D-dimensional spherically symmetric geometries. The weak energy condition for the matter on the shells is briefly analyzed. The dynamical evolution is studied, and the general formalism for the stability of static solutions is presented. Several examples corresponding to different spacetime dimensions and values of the parameters are considered.


2002 ◽  
Vol 11 (02) ◽  
pp. 237-244 ◽  
Author(s):  
S. G. GHOSH ◽  
R. V. SARAYKAR

We analyze here the spherically symmetric collapse of a charged null fluid in a higher dimensional spacetime. Both naked singularities and black holes are shown to be developing as final outcome of the collapse. A relationship between weak energy condition and occurrence of strong curvature singularity is pointed out.


Sign in / Sign up

Export Citation Format

Share Document