scholarly journals On the Energy of a Non-Singular Black Hole Solution Satisfying the Weak Energy Condition

Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 169
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Farook Rahaman ◽  
Marius-Mihai Cazacu ◽  
Andromahi Spanou ◽  
...  

The energy-momentum localization for a new four-dimensional and spherically symmetric, charged black hole solution that through a coupling of general relativity with non-linear electrodynamics is everywhere non-singular while it satisfies the weak energy condition, is investigated. The Einstein and Møller energy-momentum complexes have been employed in order to calculate the energy distribution and the momenta for the aforesaid solution. It is found that the energy distribution depends explicitly on the mass and the charge of the black hole, on two parameters arising from the space-time geometry considered, and on the radial coordinate. Further, in both prescriptions all the momenta vanish. In addition, a comparison of the results obtained by the two energy-momentum complexes is made, whereby some limiting and particular cases are pointed out.

2018 ◽  
Vol 27 (03) ◽  
pp. 1850032 ◽  
Author(s):  
Ernesto Contreras ◽  
Ángel Rincón ◽  
Benjamin Koch ◽  
Pedro Bargueño

In this work, we present a regular black hole solution, in the context of scale-dependent General Relativity, satisfying the weak energy condition. The source of this solution is an anisotropic effective energy–momentum tensor which appears when the scale dependence of the theory is turned-on. In this sense, the solution can be considered as a semiclassical extension of the Schwarzschild one.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1622
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Marius Mihai Cazacu

Energy-momentum localization for the four-dimensional static and spherically symmetric, regular Simpson–Visser black hole solution is studied by use of the Einstein and Møller energy-momentum complexes. According to the particular values of the parameter of the metric, the static Simpson–Visser solution can possibly describe the Schwarzschild black hole solution, a regular black hole solution with a one-way spacelike throat, a one-way wormhole solution with an extremal null throat, or a traversable wormhole solution of the Morris–Thorne type. In both prescriptions it is found that all the momenta vanish, and the energy distribution depends on the mass m, the radial coordinate r, and the parameter a of the Simpson–Visser metric. Several limiting cases of the results obtained are discussed, while the possibility of astrophysically relevant applications to gravitational lensing issues is pointed out.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
I. Radinschi ◽  
F. Rahaman ◽  
Th. Grammenos ◽  
A. Spanou ◽  
Sayeedul Islam

A study about the energy momentum of a new four-dimensional spherically symmetric, static and charged, regular black hole solution developed in the context of general relativity coupled to nonlinear electrodynamics is presented. Asymptotically, this new black hole solution behaves as the Reissner-Nordström solution only for the particular valueμ=4, whereμis a positive integer parameter appearing in the mass function of the solution. The calculations are performed by use of the Einstein, Landau-Lifshitz, Weinberg, and Møller energy momentum complexes. In all the aforementioned prescriptions, the expressions for the energy of the gravitating system considered depend on the massMof the black hole, its chargeq, a positive integerα, and the radial coordinater. In all these pseudotensorial prescriptions, the momenta are found to vanish, while the Landau-Lifshitz and Weinberg prescriptions give the same result for the energy distribution. In addition, the limiting behavior of the energy for the casesr→∞,r→0, andq=0is studied. The special caseμ=4andα=3is also examined. We conclude that the Einstein and Møller energy momentum complexes can be considered as the most reliable tools for the study of the energy momentum localization of a gravitating system.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Farook Rahaman ◽  
Andromahi Spanou ◽  
Sayeedul Islam ◽  
...  

The energy-momentum of a new four-dimensional, charged, spherically symmetric, and nonsingular black hole solution constructed in the context of general relativity coupled to a theory of nonlinear electrodynamics is investigated, whereby the nonlinear mass function is inspired by the probability density function of the continuous logistic distribution. The energy and momentum distributions are calculated by use of the Einstein, Landau-Lifshitz, Weinberg, and Møller energy-momentum complexes. In all these prescriptions, it is found that the energy distribution depends on the mass M and the charge q of the black hole, an additional parameter β coming from the gravitational background considered, and the radial coordinate r. Further, the Landau-Lifshitz and Weinberg prescriptions yield the same result for the energy, while, in all the aforesaid prescriptions, all the momenta vanish. We also focus on the study of the limiting behavior of the energy for different values of the radial coordinate, the parameter β, and the charge q. Finally, it is pointed out that, for r→∞ and q=0, all the energy-momentum complexes yield the same expression for the energy distribution as in the case of the Schwarzschild black hole solution.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
G G L Nashed ◽  
Kazuharu Bamba

Abstract $f(R)$ theory is a modification of Einstein’s general relativity which has provided many interesting results in cosmology and astrophysics. To derive a black hole solution in this theory is difficult due to the fact that it contains fourth-order differential equations. In this study, we use the first reliable deviation from general relativity which is given by the quadratic form of $f(R)=R+\beta R^2$, where $\beta$ is a dimensional parameter. We calculate the energy conditions of charged black holes and show that they are all satisfied for the Taub–NUT spacetime. Finally, we study some thermodynamic quantities such as entropy, temperature, specific heat, and Gibbs free energy. The calculations of heat capacity and free energy show that the charged Taub–NUT black hole has positive values, which means that it has thermal stability.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 69
Author(s):  
Irina Radinschi ◽  
Pradyumn Kumar Sahoo ◽  
Theophanes Grammenos ◽  
Surajit Chattopadhyay ◽  
Marius-Mihai Cazacu

The space-time geometry exterior to a new four-dimensional, spherically symmetric and charged black hole solution that, through a coupling of general relativity with a non-linear electrodynamics, is non-singular everywhere, for small r it behaves as a de Sitter metric, and asymptotically it behaves as the Reissner-Nordström metric, is considered in order to study energy-momentum localization. For the calculation of the energy and momentum distributions, the Einstein, Landau-Lifshitz, Weinberg and Møller energy-momentum complexes were applied. The results obtained show that in all prescriptions the energy depends on the mass M of the black hole, the charge q, two parameters a ∈ Z + and γ ∈ R + , and on the radial coordinate r. The calculations performed in each prescription show that all the momenta vanish. Additionally, some limiting and particular cases for r and q are studied, and a possible connection with strong gravitational lensing and microlensing is attempted.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Farook Rahaman ◽  
Andromahi Spanou ◽  
Marius Mihai Cazacu ◽  
...  

The evaluation of the energy-momentum distribution for a new four-dimensional, spherically symmetric, static and charged black hole spacetime geometry with constant nonzero topological Euler density is performed by using the energy-momentum complexes of Einstein and Møller. This black hole solution was recently developed in the context of the coupled Einstein–nonlinear electrodynamics of the Born-Infeld type. The energy is found to depend on the mass M and the charge q of the black hole, the cosmological constant Λ, and the radial coordinate r, while in both prescriptions all the momenta vanish. Some limiting and particular cases are analyzed and discussed, illustrating the rather extraordinary character of the spacetime geometry considered.


2019 ◽  
Vol 34 (35) ◽  
pp. 1930017 ◽  
Author(s):  
Antonio Gallerati

We perform a detailed analysis of black hole solutions in supergravity models. After a general introduction on black holes in general relativity and supersymmetric theories, we provide a detailed description of ungauged extended supergravities and their dualities. Therefore, we analyze the general form of black hole configurations for these models, their near-horizon behavior and characteristic of the solution. An explicit construction of a black hole solution with its physical implications is given for the STU-model. The second part of this review is dedicated to gauged supergravity theories. We describe a step-by-step gauging procedure involving the embedding tensor formalism to be used to obtain a gauged model starting from an ungauged one. Finally, we analyze general black hole solutions in gauged models, providing an explicit example for the [Formula: see text], [Formula: see text] case. A brief review on special geometry is also provided, with explicit results and relations for supersymmetric black hole solutions.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Bruno J. Barros ◽  
Bogdan Dǎnilǎ ◽  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Abstract We investigate static and spherically symmetric solutions in a gravity theory that extends the standard Hilbert–Einstein action with a Lagrangian constructed from a three-form field $$A_{\alpha \beta \gamma }$$Aαβγ, which is related to the field strength and a potential term. The field equations are obtained explicitly for a static and spherically symmetric geometry in vacuum. For a vanishing three-form field potential the gravitational field equations can be solved exactly. For arbitrary potentials numerical approaches are adopted in studying the behavior of the metric functions and of the three-form field. To this effect, the field equations are reformulated in a dimensionless form and are solved numerically by introducing a suitable independent radial coordinate. We detect the formation of a black hole from the presence of a Killing horizon for the timelike Killing vector in the metric tensor components. Several models, corresponding to different functional forms of the three-field potential, namely, the Higgs and exponential type, are considered. In particular, naked singularity solutions are also obtained for the exponential potential case. Finally, the thermodynamic properties of these black hole solutions, such as the horizon temperature, specific heat, entropy and evaporation time due to the Hawking luminosity, are studied in detail.


2007 ◽  
Vol 22 (01) ◽  
pp. 65-74 ◽  
Author(s):  
RITUPARNO GOSWAMI ◽  
PANKAJ S. JOSHI

We construct and study here a class of collapsing scalar field models with a nonzero potential. The weak energy condition is satisfied by the collapsing configuration and it is shown that the end state of collapse could be either a black hole or a naked singularity. It is seen that physically it is the rate of collapse that governs these outcomes of the dynamical evolution. The implications for the cosmic censorship conjecture are discussed.


Sign in / Sign up

Export Citation Format

Share Document