scholarly journals A note on Schwarzschild–de Sitter black holes in mimetic F(R) gravity

2016 ◽  
Vol 25 (07) ◽  
pp. 1650078 ◽  
Author(s):  
V. K. Oikonomou

In this paper, we investigate the conditions under which a Schwarzschild–de Sitter black hole spacetime is a solution of the mimetic [Formula: see text] gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic [Formula: see text] gravity is a slight modification of the ordinary [Formula: see text] gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary [Formula: see text] gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner–Nordström anti-de Sitter black hole.

Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2011 ◽  
Vol 26 (39) ◽  
pp. 2923-2950 ◽  
Author(s):  
MARCO OLIVARES ◽  
JOEL SAAVEDRA ◽  
CARLOS LEIVA ◽  
JOSÉ R. VILLANUEVA

We study the motion of relativistic, electrically charged point particles in the background of charged black holes with nontrivial asymptotic behavior. We compute the exact trajectories of massive particles and express them in terms of elliptic Jacobi functions. As a result, we obtain a detailed description of particles orbits in the gravitational field of Reissner–Nordström (anti)-de Sitter black hole, depending of their charge, mass and energy.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Fil Simovic ◽  
Danny Fusco ◽  
Robert B. Mann

Abstract We investigate the thermodynamic properties of 3+1 dimensional black holes in asymptotically de Sitter spacetimes, conformally coupled to a real scalar field. We use a Euclidean action approach, where boundary value data is specified at a finite radius ‘cavity’ outside the black hole, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. For the MTZ subclass of solutions, we find Hawking-Page-like phase transitions from a black hole spacetime to thermal de Sitter with a scalar field. In the more general case, Hawking-Page-like phase transitions are also present, whose existence depends further on a particular cosmic censorship bound.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2021 ◽  
pp. 2150207
Author(s):  
Zi-Yu Fu ◽  
Bao-Qi Zhang ◽  
Chuan-Yin Wang ◽  
Hui-Ling Li

By analyzing the energy–momentum relationship of the absorbed fermions dropping into a Reissner–Nordstöm–anti-de Sitter black hole surrounded by dark matter, the laws of thermodynamic and weak cosmic censorship conjecture in the extended phase space are investigated. We find that the first law of thermodynamics is valid. However, the validity of the second law of thermodynamics depends on the density [Formula: see text] of the perfect fluid dark matter. In addition, we also find that when the fermions are absorbed, the structures of black hole surrounded by dark matter would not change. Therefore, weak cosmic censorship conjecture holds for the extreme black holes and the non-extreme black holes.


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 210
Author(s):  
Ismael Ayuso ◽  
Diego Sáez-Chillón Gómez

Extremal cosmological black holes are analysed in the framework of the most general second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon and the cosmological one coincide. Such metric is induced by a particular value of the effective cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.


Sign in / Sign up

Export Citation Format

Share Document