scholarly journals Thermodynamics of de Sitter black holes with conformally coupled scalar fields

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Fil Simovic ◽  
Danny Fusco ◽  
Robert B. Mann

Abstract We investigate the thermodynamic properties of 3+1 dimensional black holes in asymptotically de Sitter spacetimes, conformally coupled to a real scalar field. We use a Euclidean action approach, where boundary value data is specified at a finite radius ‘cavity’ outside the black hole, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. For the MTZ subclass of solutions, we find Hawking-Page-like phase transitions from a black hole spacetime to thermal de Sitter with a scalar field. In the more general case, Hawking-Page-like phase transitions are also present, whose existence depends further on a particular cosmic censorship bound.

2021 ◽  
pp. 2150108
Author(s):  
Sen Guo ◽  
Ya Ling Huang ◽  
Ke Jiang He ◽  
Guo Ping Li

In this paper, we attempt to further study the heat engine efficiency for the regular black hole (BH) with an anti-de Sitter (AdS) background where the working material is the Hayward–AdS (HAdS) BH. In the extended phase space, we investigate the heat engine efficiency of the HAdS BH by defining the cosmological constant as the thermodynamic pressure P and deriving the mechanical work from the PdV terms. Then, we obtain the relation between the efficiency and the entropy/pressure and plot these function figures. Meanwhile, we compare the relation between the HAdS BH with that of the Bardeen–AdS (BAdS) BH, where it is found that the efficiency of the HAdS BH increases with increase in the magnetic charge q in contrast to that of the BAdS BH decrease with increase in the magnetic charge q. We found that the HAdS BH is more efficient than the BAdS BH, and guess that it is related to the BH structure.


2021 ◽  
pp. 2150207
Author(s):  
Zi-Yu Fu ◽  
Bao-Qi Zhang ◽  
Chuan-Yin Wang ◽  
Hui-Ling Li

By analyzing the energy–momentum relationship of the absorbed fermions dropping into a Reissner–Nordstöm–anti-de Sitter black hole surrounded by dark matter, the laws of thermodynamic and weak cosmic censorship conjecture in the extended phase space are investigated. We find that the first law of thermodynamics is valid. However, the validity of the second law of thermodynamics depends on the density [Formula: see text] of the perfect fluid dark matter. In addition, we also find that when the fermions are absorbed, the structures of black hole surrounded by dark matter would not change. Therefore, weak cosmic censorship conjecture holds for the extreme black holes and the non-extreme black holes.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050048
Author(s):  
Xin-Yang Wang ◽  
Yi-Ru Wang ◽  
Wen-Biao Liu

Based on the definition of the interior volume of spherically symmetry black holes, the interior volume of Schwarzschild–(Anti) de Sitter black holes is calculated. It is shown that with the cosmological constant ([Formula: see text]) increasing, the changing behaviors of both the position of the largest hypersurface and the interior volume for the Schwarzschild–Anti de Sitter black hole are the same as the Schwarzschild–de Sitter black hole. Considering a scalar field in the interior volume and Hawking radiation with only energy, the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy is constructed. The results show that the scalar field entropy is approximately proportional to Bekenstein–Hawking entropy during Hawking radiation. Meanwhile, the proportionality coefficient is also regarded as a constant approximately with the increasing [Formula: see text]. Furthermore, considering [Formula: see text] as a dynamical variable, the modified Stefan–Boltzmann law is proposed which can be used to describe the variation of both the mass and [Formula: see text] under Hawking radiation. Using this modified law, the evolution relation between the two types of entropy is also constructed. The results show that the coefficient for Schwarzschild–de Sitter black holes is closer to a constant than the one for Schwarzschild–Anti de Sitter black holes during the evaporation process. Moreover, we find that for Hawking radiation carrying only energy, the evolution relation is a special case compared with the situation that the mass and [Formula: see text] are both considered as dynamical variables.


2015 ◽  
Vol 24 (09) ◽  
pp. 1542018 ◽  
Author(s):  
Carolina L. Benone ◽  
Luís C. B. Crispino ◽  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We discuss stationary bound states, a.k.a. clouds, for a massless test scalar field around Kerr black holes (BHs) and spinning acoustic BH analogues. In view of the absence of a mass term, the trapping is achieved via enclosing the BH — scalar field system in a cavity and imposing Dirichlet or Neumann boundary conditions. We discuss the variation of these bounds states with the discrete parameters that label them, as well as their spatial distribution, complementing results in our previous work [C. L. Benone, L. C. B. Crispino, C. Herdeiro and E. Radu, Phys. Rev. D91 (2015) 104038].


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Chao Wu ◽  
Rui-Hong Yue

We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.


2002 ◽  
Vol 17 (20) ◽  
pp. 2767-2767
Author(s):  
JOSÉ P. S. LEMOS ◽  
VITOR CARDOSO

In the context of the AdS/CFT conjecture1, a Schwarzschild-anti-de Sitter (SAdS) black hole may be looked at as a thermal state in the CFT. Perturbing the black hole corresponds in the CFT to perturb the thermal state. We considered an important specific perturbation - the radial infall of a small test particle coupled to a scalar field into a SAdS black hole. We computed the spectra, waveforms and total scalar energy radiated during this process. For small black holes, the spectra is dominated by a resonance, and the waveform by quasinormal ringing2,3,4. For large black holes we find that the waveform quickly settles down to its final zero value, always in a quasinormal way. The approach to thermal equilibrium in the CFT is therefore dictated by the lowest quasinormal frequency. We also commented on the interpretation of the bulk process when viewed from the brane: to the black hole corresponds a thermal bath, to the infalling probe corresponds an expanding bubble, and to the scalar field waves correspond particles decaying into bosons of the associate operator of the gauge theory. For more details see5,6.


2011 ◽  
Vol 26 (39) ◽  
pp. 2923-2950 ◽  
Author(s):  
MARCO OLIVARES ◽  
JOEL SAAVEDRA ◽  
CARLOS LEIVA ◽  
JOSÉ R. VILLANUEVA

We study the motion of relativistic, electrically charged point particles in the background of charged black holes with nontrivial asymptotic behavior. We compute the exact trajectories of massive particles and express them in terms of elliptic Jacobi functions. As a result, we obtain a detailed description of particles orbits in the gravitational field of Reissner–Nordström (anti)-de Sitter black hole, depending of their charge, mass and energy.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Peng Wang ◽  
Houwen Wu ◽  
Haitang Yang ◽  
Feiyu Yao

Abstract In this paper, we extend the phase space of black holes enclosed by a spherical cavity of radius rB to include $$ V=4\pi {r}_B^3/3 $$ V = 4 π r B 3 / 3 as a thermodynamic volume. The thermodynamic behavior of Schwarzschild and Reissner-Nordstrom (RN) black holes is then investigated in the extended phase space. In a canonical ensemble at constant pressure, we find that the aforementioned thermodynamic behavior is remarkably similar to that of the anti-de Sitter (AdS) counterparts with the cosmological constant being interpreted as a pressure. Specifically, a first-order Hawking-Page-like phase transition occurs for a Schwarzschild black hole in a cavity. The phase structure of a RN black hole in a cavity shows a strong resemblance to that of the van der Waals fluid. We also display that the Smarr relation has the same expression in both AdS and cavity cases. Our results may provide a new perspective for the extended thermodynamics of AdS black holes by analogy with black holes in a cavity.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050108
Author(s):  
Yubo Ma ◽  
Yang Zhang ◽  
Ren Zhao ◽  
Shuo Cao ◽  
Tonghua Liu ◽  
...  

In this paper, we investigate the combined effects of the cloud of strings and quintessence on the thermodynamics of a Reissner–Nordström–de Sitter black hole. Based on the equivalent thermodynamic quantities considering the correlation between the black hole horizon and the cosmological horizon, we extensively discuss the phase transitions of the spacetime. Our analysis proves that similar to the case in AdS spacetime, second-order phase transitions could take place under certain conditions, with the absence of first-order phase transition in the charged de Sitter (dS) black holes with cloud of string and quintessence. The effects of different thermodynamic quantities on the phase transitions are also quantitatively discussed, which provides a new approach to study the thermodynamic qualities of unstable dS spacetime. Focusing on the entropy force generated by the interaction between the black hole horizon and the cosmological horizon, as well as the Lennard–Jones force between two particles, our results demonstrate the strong degeneracy between the entropy force of the two horizons and the ratio of the horizon positions, which follows the surprisingly similar law given the relation between the Lennard–Jones force and the ratio of two particle positions. Therefore, the study of the entropy force between two horizons is not only beneficial to the deep exploration of the three modes of cosmic evolution, but also helpful to understand the correlation between the microstates of particles in black holes and those in ordinary thermodynamic systems.


Sign in / Sign up

Export Citation Format

Share Document