scholarly journals How black holes store information in high-order correlations

2020 ◽  
Vol 29 (14) ◽  
pp. 2043011
Author(s):  
Charis Anastopoulos ◽  
Konstantina Savvidou

We explain how Hawking radiation stores significant amount of information in high-order correlations of quantum fields. This information can be retrieved by multi-time measurements on the quantum fields close to the black hole horizon. This result requires no assumptions about quantum gravity, it takes into account the differences between Gibbs’s and Boltzmann’s accounts of thermodynamics, and it clarifies misconceptions about key aspects of Hawking radiation and about informational notions in QFT.

2018 ◽  
Vol 27 (14) ◽  
pp. 1847028 ◽  
Author(s):  
Ana Alonso-Serrano ◽  
Mariusz P. Da̧browski ◽  
Hussain Gohar

The existence of a minimal length, predicted by different theories of quantum gravity, can be phenomenologically described in terms of a generalized uncertainty principle. We consider the impact of this quantum gravity motivated effect onto the information budget of a black hole and the sparsity of Hawking radiation during the black hole evaporation process. We show that the information is not transmitted at the same rate during the final stages of the evaporation, and that the Hawking radiation is not sparse anymore when the black hole approaches the Planck mass.


2003 ◽  
Vol 12 (09) ◽  
pp. 1693-1698 ◽  
Author(s):  
VERONIKA E. HUBENY

We consider, within a string theoretic context, the accessibility of events inside a black hole horizon. We present a gedankenexperiment which uses the nonlocal nature of precursors in the AdS/CFT correspondence, as well as the global nature of event horizons, to argue that the dual field theory does contain information about physics inside black holes. This alleviates the causal obstacles to accessing behind-the-horizon physics, thereby rendering more tractable certain long-standing questions of quantum gravity, such as the information paradox and possibly even singularity resolution.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2359-2366 ◽  
Author(s):  
ALEX B. NIELSEN

We discuss some of the drawbacks of using event horizons to define black holes and suggest ways in which black holes can be described without event horizons, using trapping horizons. We show that these trapping horizons give rise to thermodynamic behavior and possibly Hawking radiation too. This raises the issue of whether the event horizon or the trapping horizon should be seen as the true boundary of a black hole. This difference is important if we believe that quantum gravity will resolve the central singularity of the black hole and clarifies several of the issues associated with black hole thermodynamics and information loss.


2019 ◽  
Vol 16 (02) ◽  
pp. 1950026
Author(s):  
Alireza Sepehri ◽  
Richard Pincak ◽  
Tooraj Ghaffary

An interesting theoretical question is the probability of information loss in the black hole due to the transition point. The presented study is an attempt to investigate this subject. When the black hole is exhausted due to Hawking radiation, the entropy carried away by all emissions and string ball is not equal to the entropy in the original black hole. We conclude that the total entropy is not conserved due to the transition point. This means that some information is lost at the corresponding point. Using the Gottesman and Preskill method, the amount of information loss in the black hole at the correspondence point is obtained.


2020 ◽  
Vol 29 (15) ◽  
pp. 2030009
Author(s):  
Samir D. Mathur

We consider three fundamental issues in quantum gravity: (a) the black hole information paradox (b) the unboundedness of entropy that can be stored inside a black hole horizon (c) the relation between the black hole horizon and the cosmological horizon. With help from the small corrections theorem, we convert each of these issues into a sharp conflict. We then argue that all three conflicts can be resolved by the following hypothesis: the vacuum wave functional of quantum gravity contains a “vecro” component made of virtual fluctuations of configurations of the same type that arise in the fuzzball structure of black hole microstates. Further, if we assume that causality holds to leading order in gently curved spacetime, then we must have such a vecro component in order to resolve the above conflicts. The term vecro stands for “Virtual Extended Compression-Resistant Object”, and characterizes the nature of the vacuum fluctuations that resolve the puzzles. It is interesting that puzzle (c) may relate the role of quantum gravity in black holes to observations in the sky.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


2018 ◽  
Vol 191 ◽  
pp. 07003
Author(s):  
Xavier Calmet ◽  
Boris Latosh

We show that alongside the already observed gravitational waves, quantum gravity predicts the existence of two additional massive classical fields and thus two new massive waves. We set a limit on their masses using data from Eöt-Wash-like experiments. We point out that the existence of these new states is a model independent prediction of quantum gravity. We explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


Sign in / Sign up

Export Citation Format

Share Document