scholarly journals Analytic infinite derivative gravity, R2-like inflation, quantum gravity and CMB

2020 ◽  
Vol 29 (14) ◽  
pp. 2043018
Author(s):  
Alexey S. Koshelev ◽  
K. Sravan Kumar ◽  
Alexei A. Starobinsky

Emergence of [Formula: see text] inflation, which is the best fit framework for CMB observations till date, comes from the attempts to attack the problem of quantization of gravity which in turn have resulted in the trace anomaly discovery. Further developments in trace anomaly and different frameworks aiming to construct quantum gravity indicate an inevitability of nonlocality in fundamental physics at small time and length scales. A natural question would be to employ the [Formula: see text] inflation as a probe for signatures of nonlocality in the early Universe physics. Recent advances of embedding [Formula: see text] inflation in a string theory inspired nonlocal gravity modification provide very promising theoretical predictions connecting the nonlocal physics in the early Universe and the forthcoming CMB observations.

2018 ◽  
Vol 4 (11) ◽  
pp. eaau4886 ◽  
Author(s):  
Lin Jiao ◽  
Sahana Rößler ◽  
Deepa Kasinathan ◽  
Priscila F. S. Rosa ◽  
Chunyu Guo ◽  
...  

The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB6, a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent’s magnetic properties. For sufficiently high substituent concentrations, these states are globally destroyed. Similarly, using a magnetic tip in tunneling spectroscopy also resulted in largely suppressed surface states. Hence, a destruction of the surface states is always observed close to atoms with substantial magnetic moment. This points to the topological nature of the surface states in SmB6 and illustrates how magnetic impurities destroy the surface states from microscopic to macroscopic length scales.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 111 ◽  
Author(s):  
Dariusz Góra

The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a project dedicated to global studies of extremely extended cosmic-ray phenomena, the cosmic-ray ensembles (CRE), beyond the capabilities of existing detectors and observatories. Up to date, cosmic-ray research has been focused on detecting single air showers, while the search for ensembles of cosmic-rays, which may overspread a significant fraction of the Earth, is a scientific terra incognita. Instead of developing and commissioning a completely new global detector infrastructure, CREDO proposes approaching the global cosmic-ray analysis objectives with all types of available detectors, from professional to pocket size, merged into a worldwide network. With such a network it is possible to search for evidences of correlated cosmic-ray ensembles. One of the observables that can be investigated in CREDO is a number of spatially isolated events collected in a small time window which could shed light on fundamental physics issues. The CREDO mission and strategy requires active engagement of a large number of participants, also non-experts, who will contribute to the project by using common electronic devices (e.g., smartphones). In this note, the status and perspectives of the project are presented.


2020 ◽  
Vol 634 ◽  
pp. A84 ◽  
Author(s):  
Á. Skúladóttir ◽  
C. J. Hansen ◽  
A. Choplin ◽  
S. Salvadori ◽  
M. Hampel ◽  
...  

The slow (s) and intermediate (i) neutron (n) capture processes occur both in asymptotic giant branch (AGB) stars, and in massive stars. To study the build-up of the s- and i-products at low metallicity, we investigate the abundances of Y, Ba, La, Nd, and Eu in 98 stars, at −2.4 <  [Fe/H] <  −0.9, in the Sculptor dwarf spheroidal galaxy. The chemical enrichment from AGB stars becomes apparent at [Fe/H] ≈ −2 in Sculptor, and causes [Y/Ba], [La/Ba], [Nd/Ba] and [Eu/Ba] to decrease with metallicity, reaching subsolar values at the highest [Fe/H] ≈ −1. To investigate individual nucleosynthetic sites, we compared three n-rich Sculptor stars with theoretical yields. One carbon-enhanced metal-poor (CEMP-no) star with high [Sr, Y, Zr] >  +0.7 is best fit with a model of a rapidly-rotating massive star, the second (likely CH star) with the i-process, while the third has no satisfactory fit. For a more general understanding of the build-up of the heavy elements, we calculate for the first time the cumulative contribution of the s- and i-processes to the chemical enrichment in Sculptor, and compare with theoretical predictions. By correcting for the r-process, we derive [Y/Ba]s/i = −0.85 ± 0.16, [La/Ba]s/i = −0.49 ± 0.17, and [Nd/Ba]s/i = −0.48 ± 0.12, in the overall s- and/or i-process in Sculptor. These abundance ratios are within the range of those of CEMP stars in the Milky Way, which have either s- or i-process signatures. The low [Y/Ba]s/i and [La/Ba]s/i that we measure in Sculptor are inconsistent with them arising from the s-process only, but are more compatible with models of the i-process. Thus we conclude that both the s- and i-processes were important for the build-up of n-capture elements in the Sculptor dwarf spheroidal galaxy.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050114
Author(s):  
M. Bauer ◽  
C. A. Aguillón ◽  
G. E. García

The problem of time in the quantization of gravity arises from the fact that time in Schrödinger’s equation is a parameter. This sets time apart from the spatial coordinates, represented by operators in quantum mechanics (QM). Thus “time” in QM and “time” in general relativity (GR) are seen as mutually incompatible notions. The introduction of a dynamical time operator in relativistic quantum mechanics (RQM), that follows from the canonical quantization of special relativity and that in the Heisenberg picture is also a function of the parameter [Formula: see text] (identified as the laboratory time), prompts to examine whether it can help to solve the disfunction referred to above. In particular, its application to the conditional interpretation of time in the canonical quantization approach to quantum gravity is developed.


2009 ◽  
Vol 18 (05) ◽  
pp. 865-887
Author(s):  
S. K. SRIVASTAVA ◽  
J. DUTTA

In this paper, the cosmology of the late and future universe is obtained from f(R) gravity with nonlinear curvature terms R2 and R3 (R is the Ricci scalar curvature). It is different from f(R) dark energy models where nonlinear curvature terms are taken as a gravitational alternative to dark energy. In the present model, neither linear nor nonlinear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms and appear in the Friedmann equation derived from f(R) gravitational equations. This approach has an advantage over f(R) dark energy models in three ways: (i) results are consistent with WMAP observations, (ii) dark matter is produced from the gravitational sector and (iii) the universe expands as ~ t2/3 during dominance of the curvature-induced dark matter, which is consistent with the standard cosmology. Curvature-induced dark energy mimics phantom and causes late acceleration. It is found that transition from matter-driven deceleration to acceleration takes place at the redshift 0.36 at time 0.59 t0 (t0 is the present age of the universe). Different phases of this model, including acceleration and deceleration during the phantom phase, are investigated. It is found that expansion of the universe will stop at the age of 3.87 t0 + 694.4 kyr. After this epoch, the universe will contract and collapse by the time of 336.87 t0 + 694.4 kyr. Further, it is shown that cosmic collapse obtained from classical mechanics can be avoided by making quantum gravity corrections relevant near the collapse time due to extremely high energy density and large curvature analogous to the state of the very early universe. Interestingly, the cosmological constant is also induced here; it is extremely small in the classical domain but becomes very high in the quantum domain. This result explains the largeness of the cosmological constant in the early universe due to quantum gravity effects during this era and its very low value in the present universe due to negligible quantum effect in the late universe.


2005 ◽  
Vol 20 (07) ◽  
pp. 509-517 ◽  
Author(s):  
KEN-JI HAMADA ◽  
TETSUYUKI YUKAWA

A novel primordial spectrum with a dynamical scale of quantum gravity origin is proposed to explain the sharp fall off of the angular power spectra at low multipoles in the COBE and WMAP observations. The spectrum is derived from quantum fluctuations of the scalar curvature in a renormalizable model of induced gravity. This model describes the very early universe by the conformal field fluctuating about an inflationary background with the expansion time constant of order of the Planck mass.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 3-86 ◽  
Author(s):  
KAREL V. KUCHAŘ

In canonical quantization of gravity, the state functional does not seem to depend on time. This hampers the physical interpretation of quantum gravity. I critically examine ten major attempts to circumvent this problem and discuss their shortcomings.


Sign in / Sign up

Export Citation Format

Share Document