RELATIVISTIC ELECTRONS IN A ROTATING SPHERICAL MAGNETIC DIPOLE: LOCALIZED THREE-DIMENSIONAL STATES

1999 ◽  
Vol 08 (02) ◽  
pp. 251-270 ◽  
Author(s):  
JAMES M. GELB ◽  
KAUNDINYA S. GOPINATH ◽  
DALLAS C. KENNEDY

Paralleling a previous paper, we examine single- and many-body states of relativistic electrons in an intense, rotating magnetic dipole field. Single-body orbitals are derived semiclassically and then applied to the many-body case via the Thomas-Fermi approximation. The many-body case is reminiscent of the quantum Hall state. Electrons in a realistic neutron star crust are considered with both fixed density profiles and constant Fermi energy. In the first case, applicable to young neutron star crusts, the varying magnetic field and relativistic Coriolis correction lead to a varying Fermi energy and macroscopic currents. In the second, relevant to older crusts, the electron density is redistributed by the magnetic field.

1999 ◽  
Vol 08 (02) ◽  
pp. 229-250 ◽  
Author(s):  
JAMES M. GELB ◽  
KAUNDINYA S. GOPINATH ◽  
DALLAS C. KENNEDY

The semiclassical orbitals of a relativistic electron on a rotating sphere threaded by an intense magnetic dipole field are examined. Several physically distinct regimes emerge, depending on the relative sizes of the mass, total energy, canonical azimuthal angular momentum, and magnetic field strength. Magnetic flux enclosed by orbits is quantized very close to the poles, suggesting a quantum Hall-like state. Application of this system to neutron star surfaces is outlined.


Author(s):  
Yurui Shen ◽  
Dezheng Hua ◽  
Xinhua Liu ◽  
Weihua Li ◽  
Grzegorz Krolczyk ◽  
...  

Abstract In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on the fluorescence confocal laser scanning microscope is proposed to clearly produce the chain shape of the magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different fraction volumes and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional (2D) and three-dimensional (3D) image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis results of the rheological mechanism.


1974 ◽  
Vol 53 ◽  
pp. 133-150 ◽  
Author(s):  
V. Canuto ◽  
S. M. Chitre

Using the many-body techniques appropriate for quantum crystals it is shown that the deep interior of a neutron star is most likely an orderly arrangement of neutrons, protons and hyperons forming a solid. It is shown that a liquid or gas arrangement would produce higher energy. If so, a neutron star can be viewed as two solids (crust and core) permeated by a layer of ordinary or (perhaps) superfluid liquid. Astronomical evidence is in favor of such a structure: the sudden jumps in the periods of the Crab and Vela pulsars that differ by a factor of ∼ 102 can be easily explained by the star-quake model. If the Crab is less massive than Vela (i.e., if it is not dense enough to have a solid core), the star-quakes take place in the crust whereas for Vela they occur in the core.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Xing Hu Li ◽  
Zhi Fu Gao ◽  
Xiang Dong Li ◽  
Yan Xu ◽  
Pei Wang ◽  
...  

Based on the basic definition of the Fermi energy of degenerate and relativistic electrons, we obtain a special solution to the electron Fermi energy, [Formula: see text], and express [Formula: see text] as a function of the electron fraction, [Formula: see text], and matter density, [Formula: see text]. We obtain several useful analytical formula for [Formula: see text] and [Formula: see text] within classical models and the work of Dutra et al. (2014) (Type-2) in relativistic mean-field theory are obtained using numerically fitting. When describing the mean-field Lagrangian, density, we adopt the TMA parameter set, which is remarkably consistent with the updated astrophysical observations of neutron stars (NSs). Due to the importance of the density dependence of the symmetry energy, [Formula: see text], in nuclear astrophysics, a brief discussion on [Formula: see text] and its slop is presented. Combining these fitting formula with boundary conditions for different density regions, we can evaluate the value of [Formula: see text] in any given matter density, and obtain a schematic diagram of [Formula: see text] as a continuous function of [Formula: see text]. Compared with previous studies on the electron Fermi energy in other studies models, our methods of calculating [Formula: see text] are more simple and convenient, and can be universally suitable for the relativistic electron regions in the circumstances of common neutron stars. We have deduced a general expression of [Formula: see text] and [Formula: see text], which could be used to indirectly test whether one equation of state of a NS is correct in our future studies on neutron star matter properties. Since URCA reactions are expected in the center of a massive star due to high-value electron Fermi energy and electron fraction, this study could be useful in the future studies on the NS thermal evolution.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Soonchul Choi ◽  
Myung-Ki Cheoun ◽  
K S Kim ◽  
Hungchong Kim ◽  
H Sagawa

Abstract We suggest a hybrid model for neutron star matter to discuss the hyperon puzzle inherent in the 2.0 M$_{\odot}$ of the neutron star. For the nucleon–nucleon ($NN$) interaction, we employ the Skyrme–Hartree–Fock approach based on various Skyrme interaction parameter sets, and take the Brueckner–Hartree–Fock approach for the interactions related to hyperons. For the many-body interactions including hyperons, we make use of the multi-pomeron-exchange model, whose parameters have been adjusted to the data deduced from various hypernuclei properties. For clear understanding of the physics in the hybrid model, we discuss fractional functions of related particles, symmetry energies, and chemical potentials in dense matter. Finally, we investigate the equations of state and mass–radius relation of neutron stars, and show that the hybrid model can properly describe the 2.0 M$_{\odot}$ neutron star mass data with the many-body interaction employed in the hybrid model. Recent tidal deformability data from the gravitational wave observation are also compared to our calculations, especially in terms of the neutron skin of $^{208}$Pb and nuclear incompressibility.


1988 ◽  
Vol 76-77 ◽  
pp. 35-36 ◽  
Author(s):  
T. Müller ◽  
W. Joss ◽  
J.M. van Ruitenbeek ◽  
U. Welp ◽  
P. Wyder ◽  
...  

2019 ◽  
Vol 55 (11) ◽  
Author(s):  
Domenico Logoteta ◽  
Isaac Vidaña ◽  
Ignazio Bombaci

Abstract.We study the effects of the nucleon-nucleon-lambda (NN$ \Lambda$Λ three-body force on neutron stars. In particular, we consider the NN$ \Lambda$Λ force recently derived by the Jülich-Bonn-Munich group within the framework of chiral effective field theory at next-to-next-to-leading order. This force, together with realistic nucleon-nucleon, nucleon-nucleon-nucleon and nucleon-hyperon interactions, is used to calculate the equation of state and the structure of neutron stars within the many-body non-relativistic Brueckner-Hartree-Fock approach. Our results show that the inclusion of the NN$ \Lambda$Λ force leads to an equation of state stiff enough such that the resulting neutron star maximum mass is compatible with the largest currently measured ( $ \sim 2 M_\odot$∼2M⊙ neutron star masses. Using a perturbative many-body approach we calculate also the separation energy of the $ \Lambda$Λ in some hypernuclei finding that the agreement with the experimental data improves for the heavier ones when the effect of the NN$ \Lambda$Λ force is taken into account.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2001-2006 ◽  
Author(s):  
Wancai Li ◽  
Jiaqi Ma ◽  
Haizhen Wang ◽  
Chen Fang ◽  
Hongmei Luo ◽  
...  

AbstractTwo-dimensional (2D) organic-inorganic hybrid perovskites have attracted growing attention recently due to their naturally formed quantum-well structure, unique photoelectric properties and better environmental stability compared to three-dimensional perovskites. The reduced screening and enhanced Coulomb interaction in 2D perovskites result in the formation of excitonic complexes. While the properties of free excitons have been well investigated, studies on biexcitons remain elusive. Here, we report on the biexcitons in 2D (iso-BA)2PbI4 (BA=C4H9NH3) crystals. The biexciton emission can be observed under a very low excitation power density of 6.4 W/cm2 at 78 K. The biexciton exhibits a large biexciton binding energy of 46 meV due to the large exciton binding energy of (iso-BA)2PbI4. Furthermore, the biexcitons exhibit a favorable polarization orientation, resulting in different anisotropy between biexcitons and excitons. Our findings would motivate more studies on biexcitons in 2D perovskites and pave the way for exploiting the many-body physics for biexciton lasing and optical storage devices.


Sign in / Sign up

Export Citation Format

Share Document