scholarly journals Numerically fitting the electron Fermi energy and the electron fraction in a neutron star

2016 ◽  
Vol 25 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Xing Hu Li ◽  
Zhi Fu Gao ◽  
Xiang Dong Li ◽  
Yan Xu ◽  
Pei Wang ◽  
...  

Based on the basic definition of the Fermi energy of degenerate and relativistic electrons, we obtain a special solution to the electron Fermi energy, [Formula: see text], and express [Formula: see text] as a function of the electron fraction, [Formula: see text], and matter density, [Formula: see text]. We obtain several useful analytical formula for [Formula: see text] and [Formula: see text] within classical models and the work of Dutra et al. (2014) (Type-2) in relativistic mean-field theory are obtained using numerically fitting. When describing the mean-field Lagrangian, density, we adopt the TMA parameter set, which is remarkably consistent with the updated astrophysical observations of neutron stars (NSs). Due to the importance of the density dependence of the symmetry energy, [Formula: see text], in nuclear astrophysics, a brief discussion on [Formula: see text] and its slop is presented. Combining these fitting formula with boundary conditions for different density regions, we can evaluate the value of [Formula: see text] in any given matter density, and obtain a schematic diagram of [Formula: see text] as a continuous function of [Formula: see text]. Compared with previous studies on the electron Fermi energy in other studies models, our methods of calculating [Formula: see text] are more simple and convenient, and can be universally suitable for the relativistic electron regions in the circumstances of common neutron stars. We have deduced a general expression of [Formula: see text] and [Formula: see text], which could be used to indirectly test whether one equation of state of a NS is correct in our future studies on neutron star matter properties. Since URCA reactions are expected in the center of a massive star due to high-value electron Fermi energy and electron fraction, this study could be useful in the future studies on the NS thermal evolution.

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


2019 ◽  
Vol 629 ◽  
pp. A88 ◽  
Author(s):  
A. Y. Potekhin ◽  
A. I. Chugunov ◽  
G. Chabrier

Aims. We study the long-term thermal evolution of neutron stars in soft X-ray transients (SXTs), taking the deep crustal heating into account consistently with the changes of the composition of the crust. We collect observational estimates of average accretion rates and thermal luminosities of such neutron stars and compare the theory with observations. Methods. We performed simulations of thermal evolution of accreting neutron stars, considering the gradual replacement of the original nonaccreted crust by the reprocessed accreted matter, the neutrino and photon energy losses, and the deep crustal heating due to nuclear reactions in the accreted crust. We also tested and compared results for different modern theoretical models. We updated a compilation of the observational estimates of the thermal luminosities in quiescence and average accretion rates in the SXTs and compared the observational estimates with the theoretical results. Results. The long-term thermal evolution of transiently accreting neutron stars is nonmonotonic. The quasi-equilibrium temperature in quiescence reaches a minimum and then increases toward the final steady state. The quasi-equilibrium thermal luminosity of a neutron star in an SXT can be substantially lower at the minimum than in the final state. This enlarges the range of possibilities for theoretical interpretation of observations of such neutron stars. The updates of the theory and observations leave the previous conclusions unchanged, namely that the direct Urca process operates in relatively cold neutron stars and that an accreted heat-blanketing envelope is likely present in relatively hot neutron stars in the SXTs in quiescence. The results of the comparison of theory with observations favor suppression of the triplet pairing type of nucleon superfluidity in the neutron-star matter.


1992 ◽  
Vol 128 ◽  
pp. 220-221
Author(s):  
George G. Pavlov

AbstractEven old (106 to 107 yr) pulsars within a few hundred parsecs of the Sun should give UV and optical fluxes via thermal radiation or radiation from relativistic particles. The surface temperature of a neutron star depends on its mass, radius, magnetic field, and internal composition (existence of pion condensate, superfluidity of nucléons, etc.). If the temperature exceeds ~2x104 K, the thermal radiation can be detected by the Hubble Space Telescope. An analysis of the results will allow one to study the thermal evolution and inner structure of neutron stars in order to obtain additional constraints on pulsar models.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.


Author(s):  
Akira Dohi ◽  
Ken’ichiro Nakazato ◽  
Masa-aki Hashimoto ◽  
Matsuo Yasuhide ◽  
Tsuneo Noda

Abstract Whether fast cooling processes occur or not is crucial for the thermal evolution of neutron stars. In particular, the threshold of the direct Urca process, which is one of the fast cooling processes, is determined by the interior proton fraction $Y_p$, or the nuclear symmetry energy. Since recent observations indicate the small radius of neutron stars, a low value is preferred for the symmetry energy. In this study, simulations of neutron star cooling are performed adopting three models for the equation of state (EoS): Togashi, Shen, and LS220 EoSs. The Togashi EoS has been recently constructed with realistic nuclear potentials under finite temperature, and found to account for the small radius of neutron stars. As a result, we find that, since the direct Urca process is forbidden, the neutron star cooling is slow with use of the Togashi EoS. This is because the symmetry energy of Togashi EoS is lower than those of other EoSs. Hence, in order to account for observed age and surface temperature of isolated neutron stars with the use of the Togashi EoS, other fast cooling processes are needed regardless of the surface composition.


1999 ◽  
Vol 08 (02) ◽  
pp. 251-270 ◽  
Author(s):  
JAMES M. GELB ◽  
KAUNDINYA S. GOPINATH ◽  
DALLAS C. KENNEDY

Paralleling a previous paper, we examine single- and many-body states of relativistic electrons in an intense, rotating magnetic dipole field. Single-body orbitals are derived semiclassically and then applied to the many-body case via the Thomas-Fermi approximation. The many-body case is reminiscent of the quantum Hall state. Electrons in a realistic neutron star crust are considered with both fixed density profiles and constant Fermi energy. In the first case, applicable to young neutron star crusts, the varying magnetic field and relativistic Coriolis correction lead to a varying Fermi energy and macroscopic currents. In the second, relevant to older crusts, the electron density is redistributed by the magnetic field.


1970 ◽  
Vol 37 ◽  
pp. 202-207
Author(s):  
Wallace H. Tucker

The purpose of this paper is to discuss the relationship between rotating neutron stars, pulsars, and cosmic X-ray sources. The latter may be divided into at least two classes: the sources with large angular diameters, such as the Crab Nebula, and those with small angular diameter, such as Sco X-1. I submit that a basic model, consisting of a rotating neutron star losing mass in the presence of a large magnetic field, can account for both types of X-ray source. The extended sources represent the case where the energy in the ‘neutron-star wind’ is greater than the magnetic energy. The streaming protons and electrons deposit their energy far out into the nebula in a shock transition region. The relativistic electrons responsible for the extended sources of radio, optical and X-ray emission are produced in the transfer of energy between the protons and electrons in the shock wave, and by magnetic pumping in hydromagnetic waves which are generated by fluctuations in the mass loss rate. The compact sources, such as Sco X-1, represent the other extreme where the magnetic energy dominates, so that no mass loss occurs. The particles are then accelerated and radiate in radiation belts around the neutron star, resulting in a source with a small angular diameter.


2016 ◽  
Vol 25 (10) ◽  
pp. 1630026
Author(s):  
Sachiko Tsuruta

We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.


2019 ◽  
Vol 488 (4) ◽  
pp. 4477-4486 ◽  
Author(s):  
N Degenaar ◽  
L S Ootes ◽  
D Page ◽  
R Wijnands ◽  
A S Parikh ◽  
...  

ABSTRACT The structure and composition of the crust of neutron stars plays an important role in their thermal and magnetic evolution, hence in setting their observational properties. One way to study the properties of the crust of a neutron star, is to measure how it cools after it has been heated during an accretion outburst in a low-mass X-ray binary (LMXB). Such studies have shown that there is a tantalizing source of heat, of currently unknown origin, that is located in the outer layers of the crust and has a strength that varies between different sources and different outbursts. With the aim of understanding the mechanism behind this ‘shallow heating’, we present Chandra and Swift observations of the neutron star LMXB Aql X-1, obtained after its bright 2016 outburst. We find that the neutron star temperature was initially much lower, and started to decrease at much later time, than observed after the 2013 outburst of the source, despite the fact that the properties of the two outbursts were very similar. Comparing our data to thermal evolution simulations, we infer that the depth and magnitude of shallow heating must have been much larger during the 2016 outburst than during the 2013 one. This implies that basic neutron star parameters that remain unchanged between outbursts do not play a strong role in shallow heating. Furthermore, it suggests that outbursts with a similar accretion morphology can give rise to very different shallow heating. We also discuss alternative explanations for the observed difference in quiescent evolution after the 2016 outburst.


2004 ◽  
Vol 13 (07) ◽  
pp. 1255-1259 ◽  
Author(s):  
EDUARDO LÜTZ ◽  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG

Based on non-crossed, crossed and correlated ππ exchanges with irreducible N, Δ intermediate states, we predict an isovector component for the σ meson. We study dense hadronic matter in a generalized relativistic mean field approach with nonlinear self-couplings of the I=0,1 components of the scalar field and compare its predictions for neutron star properties with results from different models found in the literature.


Sign in / Sign up

Export Citation Format

Share Document