DETAILED STUDY FOR 16O ELASTICALLY SCATTERED FROM 16O AT ENERGIES 20, 24 and 28 MeV

2013 ◽  
Vol 22 (08) ◽  
pp. 1350058 ◽  
Author(s):  
SH. HAMADA ◽  
N. BURTEBAYEV ◽  
N. AMANGELDI

This paper includes the experimental measurements for the angular distributions of 16 O ion beam elastically scattered by 16 O nuclei at energies 20, 24 and 28 MeV . The experimental results were analyzed within the framework of both the optical model using different complex potential and the double folding (DF) potential obtained with different density-dependent nucleon–nucleon interactions which give the corresponding values of the nuclear incompressibility K in the Hartree–Fock calculation of nuclear matter. The agreement between the experimental results and the theoretical predictions in the whole angular range is fairly good. In DF calculations, the obtained normalization coefficient Nr is in the range 0.833–1.07.

2014 ◽  
Vol 23 (10) ◽  
pp. 1450061 ◽  
Author(s):  
Sh. Hamada ◽  
N. Burtebayev ◽  
N. Amangeldi

We have measured the angular distributions for 16 O elastically scattered on 12 C nuclei at energy 28 MeV and also for 12 C ion beam elastically scattered on 11 B target nuclei at energy 18 MeV. These measurements were performed in the cyclotron DC-60 INP NNC RK. Calculations were performed using both empirical Woods–Saxon and double folding optical model potentials. Both elastic scattering and transfer reaction were taken into consideration. We have extracted the spectroscopic factors for the configurations 16 O → 12 C + α and 12 C → 11 B + p and compared them with other calculated or extracted values at different energies from literature. The extracted spectroscopic factor for the configuration 12 C → 11 B + p from the current work is in the range 2.7–3.1, which is very close to Cohen–Kurath prediction. While for the configuration 16 O → 12 C + α, spectroscopic factors show fluctuation with energy which could be due to the well-known resonant-like behavior observed in 16 O + 12 C excitation function.


2006 ◽  
Vol 21 (29) ◽  
pp. 2217-2232 ◽  
Author(s):  
M. E. KURKCUOGLU ◽  
H. AYTEKIN ◽  
I. BOZTOSUN

In this paper, a simultaneous analysis of the elastic scattering data of the 16 O +16 O system for the energy range 5–10 MeV/nucleon is performed theoretically within the framework of the optical model formalism, by using the α–α double folding cluster potential. The α–α double folding cluster potential is evaluated by using the α-cluster distribution densities in the usual nucleon–nucleon double folding process with an effective α–α interaction potential. The results of the α–α double folding cluster potential analysis are compared with the findings of the phenomenological Woods–Saxon squared and nucleon–nucleon double folding potentials. All potentials have exhibited a very good agreement with the experimental measurements for the elastic scattering angular distributions. Furthermore, it is shown that, the α–α double folding cluster potential and nucleon–nucleon double folding potential calculations provide very consistent results with each other. Thus, the 16 O+ 16 O system has been described by optical potentials having a deep real potential part and a weak absorptive imaginary potential part.


2008 ◽  
Vol 17 (04) ◽  
pp. 715-733 ◽  
Author(s):  
M. EL-AZAB FARID ◽  
A. M. A. NOSSAIR ◽  
AWAD A. IBRAHEEM

Elastic scattering of the two-neutron halo nucleus, 6 He , on 12 C target at 38.3 and 41.6 MeV/nucleon has been analyzed in the framework of the double-folding optical model. Real double-folded potentials based on the realistic density-dependent DDM3Y and JLM effective nucleon–nucleon interactions are generated using different forms of the nuclear matter density distribution of 6 He . The imaginary optical potentials are taken in the conventional Woods–Saxon form. The bare (unnormalized) real folded potentials derived from the JLM interaction are more successful in reproducing the data at both energies than those derived from the DDM3Y interaction. The effect of contribution of the dynamic polarization potential is also studied. A semimicroscopic approximation is proposed to simulate this potential by introducing a repulsive real part extracted from the generated folded potential. Fits to data have been slightly improved by considering this approximation.


2006 ◽  
Vol 15 (06) ◽  
pp. 1317-1332 ◽  
Author(s):  
M. KARAKOC ◽  
I. BOZTOSUN

This paper comprises the first detailed application of the microscopic potentials for a simultaneous analysis of the elastic scattering and fusion cross-section data of the 12 C+ 24Mg system from 16.0 MeV to 24.0 MeV. We use the microscopic nucleon-nucleon double folding and α-α double folding cluster potentials within the framework of the optical model and coupled-channels formalism. We compare our microscopic potential results with the findings of the phenomenological deep and shallow potentials. All potentials provide a very good agreement with the experimental data for the elastic scattering angular distributions. However, only deep phenomenological, the microscopic nucleon-nucleon and α-α double folding cluster potentials provide a consistent description of the angular distributions and fusion cross-section data simultaneously.


2008 ◽  
Vol 22 (25n26) ◽  
pp. 4684-4696
Author(s):  
DAO T. KHOA ◽  
W. VON OERTZEN ◽  
H. G. BOHLEN

We present a brief overview of the light wave interference in the atmospheric rainbow and how a similar mechanism can be observed in the elastic nucleus-nucleus scattering which gives rise to the nuclear rainbow. The latter phenomenon, observed at energies of around few tens MeV/nucleon, has been well investigated based on the basic concepts of the nuclear optical model. Given a weak absorption associated with the nuclear rainbow scattering, the observed data can be used to probe the density dependence of the effective nucleon-nucleon (NN) interaction based on the folding model study of elastic scattering. Most of the rainbow scattering data were found to be best described by a density dependent NN interaction which gives a nuclear incompressibility K ≈ 230 – 260 MeV in the Hartree-Fock calculation of nuclear matter. This result implies a rather soft equation of state of nuclear matter.


2005 ◽  
Vol 14 (04) ◽  
pp. 663-673 ◽  
Author(s):  
I. BOZTOSUN ◽  
O. BAYRAK ◽  
Y. DAGDEMIR

Studying nuclear reactions near the Coulomb barrier shows a number of problems which have remained unsolved for a long time: The out-of-phase problem between theoretical predictions and experimental data; the reproductions of the oscillatory structure near the Coulomb barrier; the consistent description of angular distributions together with the excitation functions data are just some of these problems. In order to address and overcome these problems, by considering a comparative study of the shallow and deep optical potentials, the elastic scattering angular distributions and excitation functions data of the 12 C +24 Mg reaction have been analyzed within the framework of the optical model over a wide energy range. The potential depths near the Coulomb barrier according to the increasing energy and threshold anomaly are discussed in terms of the shallow and deep potentials. Excellent agreement between theoretical results and measured data is obtained by using the optical model.


2015 ◽  
Vol 24 (01) ◽  
pp. 1550003 ◽  
Author(s):  
A. H. Al-Ghamdi ◽  
Awad A. Ibraheem ◽  
M. El-Azab Farid

The alpha (α) elastic scattering from different targets potential over the energy range 10–240 MeV has been analyzed in the framework of the single-folding (SF) optical model. Four targets are considered, namely, 24 Mg , 28 Si , 32 S and 40 Ca . The SF calculations for the real central part of the nuclear optical potential are performed by folding an effective α–α interaction with the α-cluster distribution density in the target nucleus. The imaginary part of the optical potential is expressed in the phenomenological Woods–Saxon (WS) form. The calculated angular distributions of the elastic scattering differential cross-section using the derived semimicroscopic potentials successfully reproduce 36 sets of data all over the measured angular ranges. The obtained results confirm the validity of the α-cluster structure of the considered nuclei. For the sake of comparison, the same sets of data are reanalyzed using microscopic double-folded optical potentials based upon the density-dependent Jeukenne–Lejeune–Mahaux (JLM) effective nucleon–nucleon interaction.


2013 ◽  
Vol 22 (11) ◽  
pp. 1350086 ◽  
Author(s):  
ZAKARIA M. M. MAHMOUD ◽  
AWAD A. IBRAHEEM ◽  
SHERIF R. MOKHTAR

In this study, the elastic scattering of 6 He projectile from 120 Sn nucleus has been analyzed in terms of optical model (OM). Microscopic double folding (DF) model has been used to generate the real central part of the OM potential. The imaginary part has been restricted to Woods–Saxon phenomenological form. Skyrme–Hartree–Fock, Symmetrized Fermi and Gaussian-Exponential densities for 6 He nucleus while Hartree–Fock–Bogolyubov (HFB) density of 120 Sn nucleus have been used to construct the real DF potential. For the effective interaction, the widely used M3Y has been adopted in the DF procedure. The results of DF have been compared with both literature experimental data and phenomenological analysis.


2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 336
Author(s):  
T. Ulucay ◽  
M. Aygun

The elastic scattering angular distributions of 32S projectile by 12C, 27Al, 40Ca, 48Ca, 48Ti, 58Ni, 63Cu, 64Ni, 76Ge, 96Mo and 100Mo targets over the energy range 83.3 - 180 MeV are analyzed in the framework of the double folding model based on the optical model. The real part of the optical model potential is obtained by using double folding model for eight different density distributions of 32S which consist of Ngo, SP, 2pF, G1, G2, S, 3pF, and HFB. The imaginary part of the optical model potential is accepted as the Woods-Saxon (WS) potential. The theoretical results successfully reproduce the experimental data over both a wide energy and a wide target nucleus. Finally, simple and useful formulas which predict imaginary potential depths of each density are derived based on the elastic scattering results.


2019 ◽  
Vol 97 (7) ◽  
pp. 803-807 ◽  
Author(s):  
G. Kocak

Fusion cross section data for the 16,18,20O + 12C systems at energies near and below the Coulomb barrier are studied within the framework of the optical model. To examine these reactions, the microscopic nucleon–nucleon double folding potentials for real and imaginary parts are found. To make a comprehensive analysis of the effect of neutron-rich systems, we used three different reactions from stable to unstable systems. The microscopic nucleon–nucleon double folding potentials show very good agreement for 16,18,20O + 12C systems with a very weak imaginary potential. Also, we have obtained better agreement by using fully microscopic nucleon–nucleon double folding potentials with the 20O + 12C system’s experimental data than in previous works, but especially at low energies we still have some problems reproducing the 20O + 12C system’s fusion cross section data.


Sign in / Sign up

Export Citation Format

Share Document