scholarly journals Applications of a nonlinear evolution equation I: The parton distributions in the proton

2014 ◽  
Vol 23 (10) ◽  
pp. 1450057 ◽  
Author(s):  
Xurong Chen ◽  
Jianhong Ruan ◽  
Rong Wang ◽  
Pengming Zhang ◽  
Wei Zhu

The nonlinear Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations with parton recombination corrections are used to dynamically evaluate the proton's parton distribution functions starting from a low scale μ2, where the nucleon consists of valence quarks. We find that the resulting negative nonlinear corrections can improve the perturbative stability of the QCD evolution equation at low Q2. Our resulting parton distributions, with four free parameters, are compatible with the existing databases. This approach provides a powerful tool to connect the quark models of the hadron and various nonperturbative effects at the scale μ2 with the measured structure functions at the high scale Q2 ≫ μ2.

1987 ◽  
Vol 02 (04) ◽  
pp. 1369-1387 ◽  
Author(s):  
Wu-Ki Tung

Some non-trivial features of the QCD-improved parton model relevant to applications on heavy particle production and semi-hard (small-x) processes of interest to collider physics are reviewed. The underlying ideas are illustrated by a simple example. Limitations of the naive parton formula as well as first order corrections and subtractions to it are dis-cussed in a quantitative way. The behavior of parton distribution functions at small x and for heavy quarks are discussed. Recent work on possible impact of unconventional small-x behavior of the parton distributions on small-x physics at SSC and Tevatron are summarized. The Drell-Yan process is found to be particularly sensitive to the small x dependence of parton distributions. Measurements of this process at the Tevatron can provide powerful constraints on the expected rates of semi-hard processes at the SSC.


2002 ◽  
Vol 17 (02) ◽  
pp. 269-278
Author(s):  
ALEJANDRO DALEO ◽  
CARLOS A. GARCIA CANAL ◽  
GABRIELA A. NAVARRO ◽  
RODOLFO SASSOT

We discuss the impact of different measurements of the [Formula: see text] asymmetry in the extraction of parametrizations of parton distribution functions.


Author(s):  
MIGUEL G. ECHEVARRÍA ◽  
AHMAD IDILBI ◽  
IGNAZIO SCIMEMI

We consider the definition of unpolarized transverse-momentum-dependent parton distribution functions while staying on-the-light-cone. By imposing a requirement of identical treatment of two collinear sectors, our approach, compatible with a generic factorization theorem with the soft function included, is valid for all non-ultra-violet regulators (as it should), an issue which causes much confusion in the whole field. We explain how large logarithms can be resummed in a way which can be considered as an alternative to the use of Collins-Soper evolution equation. The evolution properties are also discussed and the gauge-invariance, in both classes of gauges, regular and singular, is emphasized.


2018 ◽  
Vol 175 ◽  
pp. 14008 ◽  
Author(s):  
Constantia Alexandrou ◽  
Simone Bacchio ◽  
Krzysztof Cichy ◽  
Martha Constantinou ◽  
Kyriakos Hadjiyiannakou ◽  
...  

We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum [see formula in PDF] = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI’ scheme, following the non-perturbative renormalization prescription recently developed by our group.


2019 ◽  
Vol 2019 ◽  
pp. 1-68 ◽  
Author(s):  
Krzysztof Cichy ◽  
Martha Constantinou

Within the theory of Quantum Chromodynamics (QCD), the rich structure of hadrons can be quantitatively characterized, among others, using a basis of universal nonperturbative functions: parton distribution functions (PDFs), generalized parton distributions (GPDs), transverse momentum dependent parton distributions (TMDs), and distribution amplitudes (DAs). For more than half a century, there has been a joint experimental and theoretical effort to obtain these partonic functions. However, the complexity of the strong interactions has placed severe limitations, and first-principle information on these distributions was extracted mostly from their moments computed in Lattice QCD. Recently, breakthrough ideas changed the landscape and several approaches were proposed to access the distributions themselves on the lattice. In this paper, we review in considerable detail approaches directly related to partonic distributions. We highlight a recent idea proposed by X. Ji on extracting quasidistributions that spawned renewed interest in the whole field and sparked the largest amount of numerical studies within Lattice QCD. We discuss theoretical and practical developments, including challenges that had to be overcome, with some yet to be handled. We also review numerical results, including a discussion based on evolving understanding of the underlying concepts and the theoretical and practical progress. Particular attention is given to important aspects that validated the quasidistribution approach, such as renormalization, matching to light-cone distributions, and lattice techniques. In addition to a thorough discussion of quasidistributions, we consider other approaches: hadronic tensor, auxiliary quark methods, pseudodistributions, OPE without OPE, and good lattice cross-sections. In the last part of the paper, we provide a summary and prospects of the field, with emphasis on the necessary conditions to obtain results with controlled uncertainties.


2005 ◽  
Vol 20 (21) ◽  
pp. 1557-1571
Author(s):  
BURKARD REISERT

An extraction of the parton distributions of the proton by a next-to-leading order QCD fit in the framework of the Standard Model is presented. The fit implements a novel decomposition of the quark species into up- and down-type quark distributions, which is the key to enable a determination of flavor separated parton distributions from a single experiment. The fit is performed on the inclusive unpolarized neutral and charged current cross-section measurements by the H1 collaboration at HERA. The discussion of uncertainties of parton distribution functions is based upon but extends the QCD analysis published together with the H1 data.


2003 ◽  
Vol 18 (08) ◽  
pp. 1203-1210 ◽  
Author(s):  
◽  
M. HIRAI ◽  
Y. GOTO ◽  
T. HORAGUCHI ◽  
H. KOBAYASHI ◽  
...  

Polarized parton distribution functions are determined by a χ2 analysis of polarized deep inelastic experimental data. In this paper, uncertainty of obtained distribution functions is investigated by a Hessian method. We find that the uncertainty of the polarized gluon distribution is fairly large. Then, we estimate the gluon uncertainty by including the fake data which are generated from prompt photon process at RHIC. We observed that the uncertainty could be reduced with these data.


Sign in / Sign up

Export Citation Format

Share Document