The neutron microscopic optical potential based on skyrme interaction

2016 ◽  
Vol 25 (02) ◽  
pp. 1650013 ◽  
Author(s):  
Yong-Li Xu ◽  
Hai-Rui Guo ◽  
Yin-Lu Han ◽  
Qing-Biao Shen

The neutron microscopic optical potential (MOP) based on Skyrme interaction has been achieved by the Green function method in the nuclear matter, and given by the local density approximation (LDA) for finite nuclei. The total cross-sections, nonelastic cross-sections, elastic scattering angular distributions and analyzing powers are predicted for some light nuclei and actinide nuclei below 100[Formula: see text]MeV by the obtained neutron MOP with the Skyrme interaction SkC. These data are also predicted for targets in the mass range of [Formula: see text] which are too deformed and have rich nuclear structure properties. All of the theoretical results give reasonable agreements with the corresponding experimental data.

2018 ◽  
Vol 27 (03) ◽  
pp. 1850023
Author(s):  
Yongli Xu ◽  
Yinlu Han ◽  
Qingbiao Shen

The proton microscopic optical potential (MOP) based on Skyrme interaction has been achieved by the Green function method in the nuclear matter, and given by the local density approximation (LDA) for finite nuclei. The reaction cross-sections, elastic scattering angular distributions, analyzing powers, and spin-rotation functions are predicted by the obtained proton MOP with Skyrme interaction SkC in the mass range of target nuclei 24[Formula: see text][Formula: see text][Formula: see text]A[Formula: see text][Formula: see text][Formula: see text]209 with incident proton energy below 100[Formula: see text]MeV. These observables are further predicted for some light nuclei and actinide nuclei below 100[Formula: see text]MeV. The prediction is compared with existing experimental data. It is revealed that the obtained proton MOP based on Skyrme interaction SkC can satisfactorily describe the proton–nucleus elastic scattering.


2015 ◽  
Vol 33 (2) ◽  
pp. 299-305 ◽  
Author(s):  
I.F. Barna ◽  
S. Varró

AbstractWe present a non-relativistic analytic quantum mechanical model to calculate angular differential cross-sections for laser-assisted proton nucleon scattering on a Woods–Saxon optical potential where the nth-order photon absorption is taken into account simultaneously. With this novel description we can integrate two well-established fields, namely low-energy nuclear physics and multi-photon processes together. As a physical example we calculate cross-sections for proton–12C collision at 49 MeV in the laboratory frame in various realistic laser fields. We consider optical Ti:sapphire and X-ray lasers with intensities which are available in existing laser facilities or in the future ELI or X-FEL.


2009 ◽  
Vol 80 (2) ◽  
Author(s):  
V. K. Lukyanov ◽  
E. V. Zemlyanaya ◽  
K. V. Lukyanov ◽  
D. N. Kadrev ◽  
A. N. Antonov ◽  
...  

2009 ◽  
Vol 73 (6) ◽  
pp. 840-844 ◽  
Author(s):  
V. K. Lukyanov ◽  
E. V. Zemlyanaya ◽  
K. V. Lukyanov ◽  
D. N. Kadrev ◽  
A. N. Antonov ◽  
...  

2009 ◽  
Vol 18 (09) ◽  
pp. 1845-1862 ◽  
Author(s):  
V. V. PILIPENKO ◽  
V. I. KUPRIKOV ◽  
A. P. SOZNIK

The nucleon scattering on even–even nuclei in the medium-energy region has been analyzed on the basis of microscopic optical potential (OP) obtained from nuclear-matter calculations with using effective density-dependent nucleon–nucleon interaction of Skyrme type with taking account of the rearrangement potential. Calculations have been performed for volume integrals and rms radii of nucleon–nucleus OP, for energy dependencies of total and total reaction cross sections of neutron– and proton–nucleus scattering and for differential cross sections of the elastic neutron scattering at several energies on various target nuclei. Comparison of the calculation results for the mentioned quantities with corresponding experimental data has been carried out, which has shown a principal possibility of their reasonable description in the framework of the model under consideration.


Author(s):  
M.B. Kakenov ◽  
E.V. Zemlyanaya

The MPI implementation of the calculation of the microscopic optical potential of nucleon-nucleus scattering within the single folding model has been developed. The folding potential and the corresponding differential cross section of the 11Li + p elastic scattering have been calculated at 62 MeV/nucleon on the heterogeneous cluster "HybriLIT" of the Multifunctional Information and Computational Complex (MICC) of the Laboratory of Information Technologies of JINR. The agreement between experimental data and numerical results for various models of the 11Li density distribution used in the construction of the folding potential is demonstrated


2015 ◽  
Vol 24 (05) ◽  
pp. 1550035 ◽  
Author(s):  
V. K. Lukyanov ◽  
E. V. Zemlyanaya ◽  
K. V. Lukyanov ◽  
A. Y. Ellithi ◽  
I. A. M. Abdul-Magead

The pion-nucleus microscopic optical potential (OP), defined by the pion-nucleon scattering amplitude and by the generalized density distribution of a target nucleus that incudes internal degrees of freedom, is applied to construct the pion-nucleus differential cross-sections of elastic and inelastic scattering on the nuclei 28 Si , 58 Ni , 208 Pb at T lab = 291 MeV. Calculations are based on the relativistic wave equation and thus relativistic effects and distortions on the relative motion wave functions are taken into account. The respective experimental data are analyzed and the in-medium parameters of the elementary πN-amplitude are established and compared with those from the pion scattering on free nucleons.


Sign in / Sign up

Export Citation Format

Share Document