QUARK STARS IN CHIRAL COLOR DIELECTRIC MODEL

1993 ◽  
Vol 02 (03) ◽  
pp. 575-586 ◽  
Author(s):  
SANJAY K. GHOSH ◽  
PRADIP K. SAHU

The nonlinear chiral extension of color dielectric model has been used in the present work to study the properties of quark stars. Assuming that the square of meson fields develops nonzero expectation value, the thermodynamic potential for charge neutral interacting two- and three-flavor quark matter, in beta equilibrium, has been calculated up to second order in quark gluon interaction term in the Lagrangian. The equation of state has been found to be softer for higher quark masses and interaction strength. The quark stars properties are found to be dependent on EOS. The mass, radius, moment of inertia and gravitational red shift decrease as the equation of state becomes more soft.

1994 ◽  
Vol 63 (4) ◽  
pp. 681-688 ◽  
Author(s):  
A. Mishra ◽  
H. Mishra ◽  
P. K. Panda ◽  
S. P. Misra

2020 ◽  
Vol 29 (10) ◽  
pp. 2050093
Author(s):  
Masatoshi Morimoto ◽  
Yasuhiko Tsue ◽  
João da Providência ◽  
Constança Providência ◽  
Masatoshi Yamamura

To obtain the equation of state of quark matter and construct hybrid stars, we calculate the thermodynamic potential in the three-flavor Nambu–Jona-Lasinio model including the tensor-type four-point interaction and the Kobayashi–Maskawa–’t Hooft interaction. To construct the hybrid stars, it is necessary to impose the [Formula: see text] equilibrium and charge neutrality conditions on the system. It is shown that tensor condensed phases appear at large chemical potential. Under the possibility of the existence of the tensor condensates, the relationship between the radius and mass of hybrid stars is estimated.


2007 ◽  
Vol 16 (11) ◽  
pp. 1803-1811 ◽  
Author(s):  
K. KOMATHIRAJ ◽  
S. D. MAHARAJ

We find two new classes of exact solutions to the Einstein–Maxwell system of equations. The matter content satisfies a linear equation of state consistent with quark matter; a particular form of one of the gravitational potentials is specified to generate solutions. The exact solutions can be written in terms of elementary functions, and these can be related to quark matter in the presence of an electromagnetic field. The first class of solutions generalizes the Mak–Harko model. The second class of solutions does not admit any singularities in the matter and gravitational potentials at the center.


2006 ◽  
Vol 21 (26) ◽  
pp. 1965-1979 ◽  
Author(s):  
PRASHANTH JAIKUMAR ◽  
SANJAY REDDY ◽  
ANDREW W. STEINER

The existence of deconfined quark matter in the superdense interior of neutron stars is a key question that has drawn considerable attention over the past few decades. Quark matter can comprise an arbitrary fraction of the star, from 0 for a pure neutron star to 1 for a pure quark star, depending on the equation of state of matter at high density. From an astrophysical viewpoint, these two extreme cases are generally expected to manifest different observational signatures. An intermediate fraction implies a hybrid star, where the interior consists of mixed or homogeneous phases of quark and nuclear matter, depending on surface and Coulomb energy costs, as well as other finite size and screening effects. In this review, we discuss what we can deduce about quark matter in neutron stars in light of recent exciting developments in neutron star observations. We state the theoretical ideas underlying the equation of state of dense quark matter, including color superconducting quark matter. We also highlight recent advances stemming from re-examination of an old paradigm for the surface structure of quark stars and discuss possible evolutionary scenarios from neutron stars to quark stars, with emphasis on astrophysical observations.


2019 ◽  
Vol 22 (4) ◽  
pp. 311-317
Author(s):  
Hidezumi Terazawa

New forms of matter such as super-hypernuclei (strange quark matter) and superhypernuclear stars (strange quark stars) as candidates for dark matter are discussed in some detail, based on the so-called "Bodmer–Terazawa–Witten hypothesis" assuming that they are stable absolutely or quasi-stable (decaying only weakly).


2006 ◽  
Vol 23 (12) ◽  
pp. 1709-1728 ◽  
Author(s):  
David R. Jackett ◽  
Trevor J. McDougall ◽  
Rainer Feistel ◽  
Daniel G. Wright ◽  
Stephen M. Griffies

Abstract Algorithms are presented for density, potential temperature, conservative temperature, and the freezing temperature of seawater. The algorithms for potential temperature and density (in terms of potential temperature) are updates to routines recently published by McDougall et al., while the algorithms involving conservative temperature and the freezing temperatures of seawater are new. The McDougall et al. algorithms were based on the thermodynamic potential of Feistel and Hagen; the algorithms in this study are all based on the “new extended Gibbs thermodynamic potential of seawater” of Feistel. The algorithm for the computation of density in terms of salinity, pressure, and conservative temperature produces errors in density and in the corresponding thermal expansion coefficient of the same order as errors for the density equation using potential temperature, both being twice as accurate as the International Equation of State when compared with Feistel’s new equation of state. An inverse function relating potential temperature to conservative temperature is also provided. The difference between practical salinity and absolute salinity is discussed, and it is shown that the present practice of essentially ignoring the difference between these two different salinities is unlikely to cause significant errors in ocean models.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
T. S. Biró ◽  
P. Lévai ◽  
P. Ván ◽  
J. Zimányi

2017 ◽  
Vol 26 (06) ◽  
pp. 1750034 ◽  
Author(s):  
Jian-Feng Xu ◽  
Yan-An Luo ◽  
Lei Li ◽  
Guang-Xiong Peng

The properties of dense quark matter are investigated in the perturbation theory with a rapidly convergent matching-invariant running coupling. The fast convergence is mainly due to the resummation of an infinite number of known logarithmic terms in a compact form. The only parameter in this model, the ratio of the renormalization subtraction point to the chemical potential, is restricted to be about 2.64 according to the Witten–Bodmer conjecture, which gives the maximum mass and the biggest radius of quark stars to be, respectively, two times the solar mass and 11.7[Formula: see text]km.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Peng-Cheng Chu ◽  
Xiao-Hua Li ◽  
He Liu ◽  
Jia-Wei Zhang

Sign in / Sign up

Export Citation Format

Share Document