GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS WITH AGE-DEPENDENT LATENCY AND ACTIVE INFECTION

2019 ◽  
Vol 27 (04) ◽  
pp. 503-530
Author(s):  
RUI XU ◽  
NING BAI ◽  
XIAOHONG TIAN

In this paper, mathematical analysis is carried out for a mathematical model of Tuberculosis (TB) with age-dependent latency and active infection. The model divides latent TB infection into two stages: an early stage of high risk of developing active TB and a late stage of lower risk for developing active TB. Infected persons initially progress through the early latent TB stage and then can either progress to active TB infection or progress to late latent TB infection. The model is formulated by incorporating the duration that an individual has spent in the stages of the early latent TB, the late latent TB and the active TB infection as variables. By constructing suitable Lyapunov functionals and using LaSalle’s invariance principle, it is shown that the global dynamics of the disease is completely determined by the basic reproduction number: if the basic reproduction number is less than unity, the TB always dies out; if the basic reproduction number is greater than unity, a unique endemic steady state exists and is globally asymptotically stable in the interior of the feasible region and therefore the TB becomes endemic. Numerical simulations are carried out to illustrate the theoretical results.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangyun Shi ◽  
Guohua Song

This paper formulates and analyzes a pine wilt disease model. Mathematical analyses of the model with regard to invariance of nonnegativity, boundedness of the solutions, existence of nonnegative equilibria, permanence, and global stability are presented. It is proved that the global dynamics are determined by the basic reproduction numberℛ0and the other valueℛcwhich is larger thanℛ0. Ifℛ0andℛcare both less than one, the disease-free equilibrium is asymptotically stable and the pine wilt disease always dies out. If one is between the two values, though the pine wilt disease could occur, the outbreak will stop. If the basic reproduction number is greater than one, a unique endemic equilibrium exists and is globally stable in the interior of the feasible region, and the disease persists at the endemic equilibrium state if it initially exists. Numerical simulations are carried out to illustrate the theoretical results, and some disease control measures are especially presented by these theoretical results.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianping Wang ◽  
Shujing Gao ◽  
Yueli Luo ◽  
Dehui Xie

We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction numberR0which is defined through the spectral radius of a linear integral operator. IfR0< 1, then the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


2015 ◽  
Vol 23 (03) ◽  
pp. 423-455
Author(s):  
P. MOUOFO TCHINDA ◽  
JEAN JULES TEWA ◽  
BOULECHARD MEWOLI ◽  
SAMUEL BOWONG

In this paper, we investigate the global dynamics of a system of delay differential equations which describes the interaction of hepatitis B virus (HBV) with both liver and blood cells. The model has two distributed time delays describing the time needed for infection of cell and virus replication. We also include the efficiency of drug therapy in inhibiting viral production and the efficiency of drug therapy in blocking new infection. We compute the basic reproduction number and find that increasing delays will decrease the value of the basic reproduction number. We study the sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative importance to disease transmission and prevalence. Our analysis reveals that the model exhibits the phenomenon of backward bifurcation (where a stable disease-free equilibrium (DFE) co-exists with a stable endemic equilibrium when the basic reproduction number is less than unity). Numerical simulations are presented to evaluate the impact of time-delays on the prevalence of the disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Rodrigue Yves M’pika Massoukou ◽  
Suares Clovis Oukouomi Noutchie ◽  
Richard Guiem

Vaccine-induced protection is substantial to control, prevent, and reduce the spread of infectious diseases and to get rid of infectious diseases. In this paper, we propose an SVEIR epidemic model with age-dependent vaccination, latency, and infection. The model also considers that the waning vaccine-induced immunity depends on vaccination age and the vaccinated individuals fall back to the susceptible class after losing immunity. The model is a coupled system of (hyperbolic) partial differential equations with ordinary differential equations. The global dynamics of the model is established through construction of appropriate Lyapunov functionals and application of Lasalle’s invariance principle. As a result, the global stability of the infection-free equilibrium and endemic equilibrium is obtained and is fully determined by the basic reproduction number R0.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950051
Author(s):  
Xia Wang ◽  
Yuming Chen ◽  
Xinyu Song

In this paper, we propose and analyze a cholera model. The model incorporates both direct transmission (person-to-person transmission) and indirect transmission (contaminated environment-to-person transmission: hyper-infectivity and lower-infectivity). Moreover, we employ general nonlinear incidences and introduce infection age of infectious individuals and biological ages of pathogens in the environment. After considering the well-posedness of the system, we study the existence and local stability of steady states, which is determined by the basic reproduction number. To establish the attractivity of the infection steady state, we also get the uniform persistence and existence of compact global attractors. The main result is a threshold dynamics obtained by applying the Fluctuation Lemma and the approach of Lyapunov functionals. When the basic reproduction number is less than one, the infection-free steady state is globally asymptotically stable while when the basic reproduction number is larger than one, the infection steady state attracts each solution with nonzero infection force at some time point. The effect of multiple transmission modes on the disease dynamics is also discussed.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750067 ◽  
Author(s):  
Ding-Yu Zou ◽  
Shi-Fei Wang ◽  
Xue-Zhi Li

In this paper, the global properties of a mathematical modeling of hepatitis C virus (HCV) with distributed time delays is studied. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states. It is shown that if the basic reproduction number [Formula: see text] is less than unity, then the uninfected steady state is globally asymptotically stable. If the basic reproduction number [Formula: see text] is larger than unity, then the infected steady state is globally asymptotically stable.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Stanislas Ouaro ◽  
Ali Traoré

We study a vector-borne disease with age of vaccination. A nonlinear incidence rate including mass action and saturating incidence as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for disease control and elimination.


Sign in / Sign up

Export Citation Format

Share Document