CONSENSUS PROBLEMS IN WEIGHTED HIERARCHICAL GRAPHS

Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950086
Author(s):  
XIAOQIAN WANG ◽  
HUILING XU ◽  
CHANGBING MA

We present the hierarchical graph for the growth of weighted networks in which the structural growth is coupled with the edges’ weight dynamical evolution. We investigate consensus problems of the graph from weighted Laplacian spectra perspective, focusing on three important quantities of consensus problems, convergence speed, delay robustness, and first-order coherence, which are determined by the second smallest eigenvalue, largest eigenvalue, and sum of reciprocals of each nonzero eigenvalue of weighted Laplacian matrix, respectively. Unlike previous enquiries, we want to emphasize the importance of weight factor in the study of coherence problems. In what follows, we attempt to study that the weighted Laplacian eigenvalues of the weighted hierarchical graphs, which are determined through analytic recursive equations. We find in our study that the value of convergence speed and delay robustness in weighted hierarchical graphs increases as weight factor increases and the value of first-order coherence decreases as weight factor increases. Moreover, as is expected, weight factor affects the performance of consensus behavior and can be regarded as a leverage in the problem of consensus problems. This paper puts forward the proposal and the countermeasure for stability optimization of networks from the perspective of weight factor for future researchers.

2019 ◽  
Vol 33 (23) ◽  
pp. 1950264
Author(s):  
Meifeng Dai ◽  
Tingting Ju ◽  
Yongbo Hou ◽  
Jianwei Chang ◽  
Yu Sun ◽  
...  

Recently, the study of many kinds of weighted networks has received the attention of researchers in the scientific community. In this paper, first, a class of weighted star-composed networks with a weight factor is introduced. We focus on the network consistency in linear dynamical system for a class of weighted star-composed networks. The network consistency can be characterized as network coherence by using the sum of reciprocals of all nonzero Laplacian eigenvalues, which can be obtained by using the relationship of Laplacian eigenvalues at two successive generations. Remarkably, the Laplacian matrix of the class of weighted star-composed networks can be represented by the Kronecker product, then the properties of the Kronecker product can be used to obtain conveniently the corresponding characteristic roots. In the process of finding the sum of reciprocals of all nonzero Laplacian eigenvalues, the key step is to obtain the relationship of Laplacian eigenvalues at two successive generations. Finally, we obtain the main results of the first- and second-order network coherences. The obtained results show that if the weight factor is 1 then the obtained results in this paper coincide with the previous results on binary networks, otherwise the scalings of the first-order network coherence are related to the node number of attaching copy graph, the weight factor and generation number. Surprisingly, the scalings of the first-order network coherence are independent of the node number of initial graph. Consequently, it will open up new perspectives for future research.


2014 ◽  
Vol 28 (02) ◽  
pp. 1450009 ◽  
Author(s):  
QINGYAN DING ◽  
WEIGANG SUN ◽  
FANGYUE CHEN

In this paper, we calculate the Laplacian spectra of a 3-prism graph and apply them. This graph is both planar and polyhedral, and belongs to the generalized Petersen graph. Using the regular structures of this graph, we obtain the recurrent relationships for Laplacian matrix between this graph and its initial state — a triangle — and further derive the corresponding relationships for Laplacian eigenvalues between them. By these relationships, we obtain the analytical expressions for the product and the sum of the reciprocals of all nonzero Laplacian eigenvalues. Finally we apply these expressions to calculate the number of spanning trees and mean first-passage time (MFPT) and see that the scaling of MFPT with the network size N is N2, which is larger than those performed on some uniformly recursive trees.


Author(s):  
Somnath Paul

The distance Laplacian matrix of a simple connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main diagonal entries are the vertex transmissions in [Formula: see text] In this paper, we determine the distance Laplacian spectra of the graphs obtained by generalization of the join and lexicographic product of graphs (namely joined union). It is shown that the distance Laplacian spectra of these graphs not only depend on the distance Laplacian spectra of the participating graphs but also depend on the spectrum of another matrix of vertex-weighted Laplacian kind (analogous to the definition given by Chung and Langlands [A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A 75 (1996) 316–327]).


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1248
Author(s):  
Da Huang ◽  
Jian Zhu ◽  
Zhiyong Yu ◽  
Haijun Jiang

In this article, the consensus-related performances of the triplex multi-agent systems with star-related structures, which can be measured by the algebraic connectivity and network coherence, have been studied by the characterization of Laplacian spectra. Some notions of graph operations are introduced to construct several triplex networks with star substructures. The methods of graph spectra are applied to derive the network coherence, and some asymptotic behaviors of the indices have been derived. It is found that the operations of adhering star topologies will make the first-order coherence increase a constant value under the triplex structures as parameters tend to infinity, and the second-order coherence have some equality relations as the node related parameters tend to infinity. Finally, the consensus related indices of the triplex systems with the same number of nodes but non-isomorphic graph structures have been compared and simulated to verify the results.


2007 ◽  
Vol 16 (6) ◽  
pp. 923-946 ◽  
Author(s):  
AMIN COJA-OGHLAN

We investigate the Laplacian eigenvalues of sparse random graphs Gnp. We show that in the case that the expected degree d = (n-1)p is bounded, the spectral gap of the normalized Laplacian $\LL(\gnp)$ is o(1). Nonetheless, w.h.p. G = Gnp has a large subgraph core(G) such that the spectral gap of $\LL(\core(G))$ is as large as 1-O (d−1/2). We derive similar results regarding the spectrum of the combinatorial Laplacian L(Gnp). The present paper complements the work of Chung, Lu and Vu [8] on the Laplacian spectra of random graphs with given expected degree sequences. Applied to Gnp, their results imply that in the ‘dense’ case d ≥ ln2n the spectral gap of $\LL(\gnp)$ is 1-O (d−1/2) w.h.p.


Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 1025-1033
Author(s):  
Predrag Milosevic ◽  
Emina Milovanovic ◽  
Marjan Matejic ◽  
Igor Milovanovic

Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ? d2 ?...? dn > 0, and let ?1 ? ? 2 ? ... ? ?n-1 > ?n = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy LE, Laplacian-energy-like invariant LEL and Kirchhoff index Kf, are graph invariants defined in terms of Laplacian eigenvalues. These are, respectively, defined as LE(G) = ?n,i=1 |?i-2m/n|, LEL(G) = ?n-1 i=1 ??i and Kf (G) = n ?n-1,i=1 1/?i. A vertex-degree-based topological index referred to as degree deviation is defined as S(G) = ?n,i=1 |di- 2m/n|. Relations between Kf and LE, Kf and LEL, as well as Kf and S are obtained.


Author(s):  
Hilal A. Ganie ◽  
S. Pirzada ◽  
Bilal A. Chat ◽  
X. Li

We consider the skew Laplacian matrix of a digraph [Formula: see text] obtained by giving an arbitrary direction to the edges of a graph [Formula: see text] having [Formula: see text] vertices and [Formula: see text] edges. With [Formula: see text] to be the skew Laplacian eigenvalues of [Formula: see text], the skew Laplacian energy [Formula: see text] of [Formula: see text] is defined as [Formula: see text]. In this paper, we analyze the effect of changing the orientation of an induced subdigraph on the skew Laplacian spectrum. We obtain bounds for the skew Laplacian energy [Formula: see text] in terms of various parameters associated with the digraph [Formula: see text] and the underlying graph [Formula: see text] and we characterize the extremal digraphs attaining these bounds. We also show these bounds improve some known bounds for some families of digraphs. Further, we show the existence of some families of skew Laplacian equienergetic digraphs.


2018 ◽  
Vol 29 (01) ◽  
pp. 1850009 ◽  
Author(s):  
Xiaoqian Wang ◽  
Meifeng Dai ◽  
Yufei Chen ◽  
Yue Zong ◽  
Yu Sun ◽  
...  

In this paper, we consider the entire mean first-passage time (EMFPT) with random walks for Cayley networks. We use Laplacian spectra to calculate the EMFPT. Firstly, we calculate the constant term and monomial coefficient of characteristic polynomial. By using the Vieta theorem, we then obtain the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix. Finally, we obtain the scaling of the EMFPT for Cayley networks by using the relationship between the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix and the EMFPT. We expect that our method can be adapted to other types of self-similar networks, such as vicsek networks, polymer networks.


2020 ◽  
Vol 34 (18) ◽  
pp. 2050159
Author(s):  
Changxi Dai ◽  
Meifeng Dai ◽  
Tingting Ju ◽  
Xiangmei Song ◽  
Yu Sun ◽  
...  

The eigentime identity for random walks on the weighted networks is the expected time for a walker going from a node to another node. Eigentime identity can be studied by the sum of reciprocals of all nonzero Laplacian eigenvalues on the weighted networks. In this paper, we study the weighted [Formula: see text]-flower networks with the weight factor [Formula: see text]. We divide the set of the nonzero Laplacian eigenvalues into three subsets according to the obtained characteristic polynomial. Then we obtain the analytic expression of the eigentime identity [Formula: see text] of the weighted [Formula: see text]-flower networks by using the characteristic polynomial of Laplacian and recurrent structure of Markov spectrum. We take [Formula: see text], [Formula: see text] as example, and show that the leading term of the eigentime identity on the weighted [Formula: see text]-flower networks obey superlinearly, linearly with the network size.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Da Huang ◽  
Haijun Jiang ◽  
Zhiyong Yu ◽  
Qiongxiang Huang ◽  
Xing Chen

In this paper, we mainly study the performance of star-composed networks which can achieve consensus. Specifically, we investigate the convergence speed and robustness of the consensus of the networks, which can be measured by the smallest nonzero eigenvalue λ2 of the Laplacian matrix and the H2 norm of the graph, respectively. In particular, we introduce the notion of the corona of two graphs to construct star-composed networks and apply the Laplacian spectrum to discuss the convergence speed and robustness for the communication network. Finally, the performances of the star-composed networks have been compared, and we find that the network in which the centers construct a balanced complete bipartite graph has the most advantages of performance. Our research would provide a new insight into the combination between the field of consensus study and the theory of graph spectra.


Sign in / Sign up

Export Citation Format

Share Document