scholarly journals THEORETICAL STUDY OF MHD MAXWELL FLUID WITH COMBINED EFFECT OF HEAT AND MASS TRANSFER VIA LOCAL AND NONLOCAL TIME DERIVATIVES

Fractals ◽  
2021 ◽  
pp. 2240010
Author(s):  
MUHAMMAD BILAL RIAZ ◽  
FAHD JARAD ◽  
DUMITRU BALEANU ◽  
MARYAM ASGIR

This study highlights the combined effect of heat and mass transfer on MHD Maxwell fluid under time-dependent generalized boundary conditions for velocity, temperature, and concentration. The classical calculus due to the fact that it is assumed as the instant rate of change of the output when the input level changes. Therefore, it is not able to include the previous state of the system called the memory effect. But in the fractional calculus (FC), the rate of change is affected by all points of the considered interval, so it can incorporate the previous history/memory effects of any system. Due to this reason, we applied the modern definition of fractional derivatives (local and nonlocals kernels). Here, the order of fractional derivative will be treated as an index of memory. The exact and semi-analytical solutions are obtained using the integral transform and inversion algorithm. Several important properties of different parameters are analyzed by graphs. Interesting results are revealed by this investigation due to their vast applications in engineering and applied sciences.

2021 ◽  
Vol 10 (1) ◽  
pp. 177-186
Author(s):  
Syed Tauseef Saeed ◽  
Muhammad Bilal Riaz ◽  
Dumitru Baleanu

Abstract Convective flow is a self-sustained flow with the effect of the temperature gradient. The density is nonuniform due to the variation of temperature. The effect of the magnetic flux plays a major role in convective flow. The process of heat transfer is accompanied by mass transfer process; for instance condensation, evaporation and chemical process. Due to the applications of the heat and mass transfer combined effects in different field, the main aim of this paper is to do comprehensive analysis of heat and mass transfer of MHD unsteady Oldroyd-B fluid in the presence of ramped conditions. The new governing equations of MHD Oldroyd-B fluid have been fractionalized by means of singular and non-singular differentiable operators. In order to have an accurate physical significance of imposed conditions on the geometry of Oldroyd-B fluid, the ramped temperature, concentration and velocity are considered. The fractional solutions of temperature, concentration and velocity have been investigated by means of integral transform and inversion algorithm. The influence of physical parameters and flow is analyzed graphically via computational software (MATHCAD-15). The velocity profile decreases by increasing the Prandtl number. The existence of a Prandtl number may reflect the control of the thickness and enlargement of the thermal effect. The classical calculus is assumed as the instant rate of change of the output when the input level changes. Therefore it is not able to include the previous state of the system called the memory effect. Due to this reason, we applied the modern definition of fractional derivatives. Obtained generalized results are very important due to their vast applications in the field of engineering and applied sciences.


1982 ◽  
Vol 47 (3) ◽  
pp. 766-775 ◽  
Author(s):  
Václav Kolář ◽  
Jan Červenka

The paper presents results obtained by processing a series of published experimental data on heat and mass transfer during evaporation of pure liquids from the free board of a liquid film into the turbulent gas phone. The data has been processed on the basis of the earlier theory of mechanism of heat and mass transfer. In spite of the fact that this process exhibits a strong Stefan's flow, the results indicate that with a proper definition of the driving forces the agreement between theory and experiment is very good.


2014 ◽  
Vol 541-542 ◽  
pp. 722-726
Author(s):  
Jun Ming Hou ◽  
De Xu Yang ◽  
Ke Jia Wu

In this paper the drying process of ginkgo biloba is discussed. The process combined effect of convective Heat and mass transfer on hydromagnetic electrically conducting viscous, how to improve the ability of drying is an important problem. The heat transmission for drying process is discussed. The parameter of drying process is determined. The ginkgo biloba drying machine is developed and the key part of drying machine is designed. The whole drying machine is developed, which can enhance the ability of medical industry. The study can help the Optimization of drying process and the level of the ginkgo biloba drying.


Author(s):  
Tov Elperin ◽  
Andrew Fominykh ◽  
Boris Krasovitov

In this study we investigated numerically simultaneous heat and mass transfer during evaporation/condensation on the surface of a stagnant droplet in the presence of inert admixtures containing non-condensable solvable gas. The performed analysis is pertinent to slow droplet evaporation/condensation when Mach number is small (M≪1). The system of transient conjugate nonlinear energy and mass conservation equations was solved using anelastic approximation. Transport coefficients of the gaseous phase were calculated as functions of temperature and concentrations of gaseous species. Thermophysical properties of the liquid phase are assumed to be constant. Using the material balance at the droplet surface we obtained equations for Stefan velocity and the rate of change of the droplet radius taking into account the effect of solvable gas absorption at the gas-liquid interface. We derived also boundary conditions at gas-liquid interface taking into account the effect of gas absorption. The governing equations were solved using a method of lines. Numerical calculations showed essential change of the rates of heat and mass transfer in water droplet-air-water vapor system under the influence of solvable species in a gaseous phase. Consequently, the use of additives of solvable noncondensable gases to enhance the rate of heat and mass transfer in dispersed systems allows to increase the efficiency and reduce the size of gas-liquid contactors.


Sign in / Sign up

Export Citation Format

Share Document