ECONOMIC SELECTION OF MEAN VALUE FOR A FILLING PROCESS UNDER QUADRATIC QUALITY LOSS

Author(s):  
MIN-KOO LEE ◽  
SANG-BOO KIM ◽  
HYUCK-MOO KWON ◽  
SUNG HOON HONG

Consider a filling process where containers are filled with an important ingredient in a character. All containers are inspected, and the containers satisfying to meet the predetermined specification limits are sold in a regular market for a fixed price, and failing to meet them are emptied and refilled by the same filling process after some reprocessing. We assume that reprocessing cost is proportional to the quantity of the ingredients in a container that is not changed after reprocessing. An economic model is constructed on the basis of the selling price and the costs of production, inspection, reprocessing, and quality. We assume that the quality cost function is a quadratic function of the deviation from target and the quantity of the ingredients in a container is normally distributed with a known variance. Method for finding the optimum process mean is presented and a numerical example is given.

Author(s):  
Nita Shah ◽  
Ekta Patel ◽  
Kavita Rabari

Aims: This article analyzes an inventory system for deteriorating items. The demand is quadratic function of time and is dependent on time, price and advertisement. Shortages are allowed and partially backlogged. Background: Demand and pricing are the two most crucial factors in inventory policy for any business to be successful. In today’s era of competitive circumstances, any product is promoted through advertisement, which plays a vital role in changing the demand pattern among the community. The marketing and demonstration of an item by time-to-time with fashionable advertisements through well-known media such as TV, radio, newspaper, magazine, etc. However, this idea is not always true for some goods like wheat, vegetables, fruits, food grains, medicines and other perishable goods due to their deteriorating nature and this in turn decreases demand for such goods. Deterioration may define as decay, damage, spoilage, evaporation, obsolescence, pilferage. Hence, deterioration effect is a major part in inventory control theory. So in this article demand rate is considered to be a function of selling price, time and occurrence of advertisement instantaneously. Objective: A solution procedure is obtained to find optimal number of price changes and optimal selling price to maximize the total profit. Method: Classical Optimization. Result: From the sensitivity analysis table, it can be seen that the optimal profit is highly sensible to advertisement coefficient and purchase cost. With an increment in rate of deterioration, selling price decreases. Scale demand has reasonable effect on cycle time and selling price. When the value of increase, the cycle length and profit goes on decreasing. Growth in profit is observed if we increase parameter b, higher will be the profit. Price elasticity is sensible parameter with respect to selling price. If backlogging rate increases, the profit will decreases. The inventory parameters holding cost, back order cost and lost sale cost have marginal effect on total profit. Conclusion: In this article, an inventory model is proposed for deteriorating items with variable demand depends upon the advertisement, selling price of the item and time. Shortages are allowed and partially backlogged and backlogging rate depends on the waiting time for the next replenishment. From this article, we can conclude that the parameters are insensible with respect to optimal profit, cycle time and selling price and rest of the parameters have practical output on total profit.


Author(s):  
Cornelius Nellessen ◽  
Thomas Klein ◽  
Hans-Jürgen Rapp ◽  
Frank Rögener

The production of pharmaceutical ingredients, intermediates and final products strongly depends on the utilization of water. Water is also required for the purification and preparation of reagents. Each specific application determines the respective water quality. In the European Union, the European Pharmacopeia (Ph. Eur.) contains the official standards that assure quality control of pharmaceutical products during their life cycle. According to this, the production of water for pharmaceutical use is mainly based on multi-stage distillation and membrane processes, especially, reverse osmosis. Membrane distillation (MD) could be an alternative process to these classical methods. It offers advantages in terms of energy demand and a compact apparatus design. In the following study, the preparation of pharmaceutical-grade water from tap water in a one-step process using MD is presented. Special emphasis is placed on the performance of two different module designs and on the selection of optimum process parameters.


2000 ◽  
Vol 11 (5) ◽  
pp. 369-381 ◽  
Author(s):  
M.A. Rahim ◽  
A.-B. Shaibu

2020 ◽  
Vol 12 (10) ◽  
pp. 4044
Author(s):  
Marko Stokic ◽  
Davor Vujanovic ◽  
Dragan Sekulic

The efficient vehicle procurement is an important business segment of different companies with their own vehicle fleet. It has a significant influence on reducing transport and maintenance costs and on increasing the fleet’s energy efficiency. It is indispensable that managers consider various criteria from several aspects when procuring a vehicle. In that sense, we defined 13 relevant criteria and divided them into four multidisciplinary aspects: Construction-technical, financial, operational, and environmental. Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process (DANP) method was applied to evaluate the significance of defined criteria and aspects and their interdependency. It is established that the three most important criteria for vehicle procurement are vehicle price, vehicle maintenance, and vehicle selling price. The most important aspect is construction technical aspect, while the aspect of the environment is the least important. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was used to rank eight different vehicles, which were considered by vehicle fleet manager at the observed company. This model assists fleet managers in the selection of the most suitable vehicle for procurement, while significantly reducing decision-making time and simultaneously observing all necessary criteria and their weights. Moreover, we have considered 10 different scenarios to establish whether and how the rank of the observed alternatives would change.


2018 ◽  
Vol 5 (5) ◽  
pp. 13464-13471
Author(s):  
B. Singaravel ◽  
D.Prabhu Shankar ◽  
Lakshmi Prasanna

1993 ◽  
Vol 8 (4) ◽  
pp. 1661-1667 ◽  
Author(s):  
G.J. Anders ◽  
M. Vainberg ◽  
D.J. Horrocks ◽  
S.M. Foty ◽  
J. Motlis ◽  
...  

2001 ◽  
Vol 123 (4) ◽  
pp. 884-892 ◽  
Author(s):  
J. Herna´ndez ◽  
J. Lo´pez ◽  
F. Faura

The influence of unsteady effects on the evacuation of air through vents in pressure die casting processes is analyzed. A model is proposed which considers the air flow as one-dimensional and adiabatic, and which retains friction effects. Venting conditions for wide ranges of the relevant dimensionless parameters are analyzed for both atmospheric and vacuum venting systems. The model is solved numerically using the method of characteristics and its results are compared with those obtained for quasi-steady models. It is shown that wide ranges of operating conditions can exist in practical situations, for which unsteady effects, neglected in previous models, are important and must be taken into account to determine the air mass entrapped at the end of the filling process. The selection of parameters which will reduce the amount of trapped air and thus porosity in manufactured parts is also discussed.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Deshun Liu ◽  
Yehui Peng

In this paper, two second-order methods are proposed for reliability analysis. First, general random variables are transformed to standard normal random variables. Then, the limit-state function is additively decomposed into one-dimensional functions, which are then expanded at the mean-value point to second-order terms. The approximated limit-state function becomes the sum of independent variables following noncentral chi-square distributions or normal distributions. The first method computes the probability of failure by the saddle-point approximation. If a saddle-point does not exist, the second method is then used. The second method approximates the limit-state function by a quadratic function with independent variables following normal distributions with the same variances. This treatment leads to a quadratic function that follows a noncentral chi-square distribution. These methods generally produce more accurate reliability approximations than the first-order reliability method (FORM) with 2n + 1 function evaluations, where n is the dimension of the problem. The effectiveness of the proposed methods is demonstrated with three examples, and the proposed methods are compared with the first- and second-order reliability methods (SROMs).


Sign in / Sign up

Export Citation Format

Share Document