SURFACE TEMPERATURE FIELD MODEL AND INFLUENCE FACTORS OF HF CVD DIAMOND FILMS ON WC–Co ALLOYS

2006 ◽  
Vol 13 (05) ◽  
pp. 661-668
Author(s):  
SHA LIU ◽  
JING QIU ZHANG

The surface temperature field model of hot filament chemical vapor deposition (HF CVD) diamond films on WC – Co alloys was constructed and calculated by taking into account the influences of both thermal source properties and physical properties of substrates. Under the certain conditions of some parameters, the effects of the influence factors such as the maximum specific heat flux (q m ), the heat conductivity coefficient (λ) of the substrate and the substrate height (h) on the surface temperature field were exhibited quickly and clearly by the computer modeling. The theoretical calculating data are close to the experimental results. It is found that the influences of the thermal source parameter, the substrate height, and the heat conductivity coefficient of the substrate materials on the surface temperature field of diamond films on WC – Co alloys are almost equally important.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3206
Author(s):  
Xuehui Chen ◽  
Xin Xu ◽  
Wei Liu ◽  
Lei Huang ◽  
Hao Li ◽  
...  

This paper studies the compound effect of liquid medium and laser on the workpiece and analyses the law of material surface temperature change during the processing. Taking 7075-T6 aluminum alloy as the research object, the surface temperature field of aluminum alloy processed using water-jet-assisted laser machining under different process parameters was simulated using finite element software. In addition, the temperature field of the material surface was detected in real-time using the self-built water-jet-assisted laser machining temperature field detection system, and the processing results were observed and verified using an optical microscope, scanning electron microscope, and energy spectrum analyzer. The results show that when the water jet inflow angle is 45°, the heat-affected area of the material surface is the smallest, and the cooling effect of the temperature field of the material surface is better. Considering the liquidus melting point of 7075 aluminum alloys, it is concluded that the processing effect is better when the water jet velocity is 14 m·s−1, the laser power is 100 W, and the laser scanning speed is 1.2 mm·s−1. At this time, the quality of the tank is relatively good, there are no cracks in the bottom of the tank, and there is less slag accumulation. Compared with anhydrous laser etching, water-jet-assisted laser etching can reduce the problems of micro-cracks, molten slag, and the formation of a recast layer in laser etching and improve the quality of the workpiece, and the composition of the bottom slag does not change. This study provides theoretical guidance and application support for the selection and optimization of process parameters for water-jet-assisted laser etching of aluminum alloy and further enriches the heat transfer mechanism of multi-field coupling in the process of water-jet-assisted laser machining.


Author(s):  
Qi Zhang ◽  
Zengliang Li ◽  
Xiangwei Dong ◽  
Yanxin Liu ◽  
Ran Yu

Abstract The reliability of submersible motor is the key to determining the stability of the middle and deep sea exploration and development equipment. In this paper, in view of different equivalent modes of convective heat transfer of housing surface, two temperature field models are established in the finite volume method (FVM). The unidirectional and bidirectional coupling mode between loss and temperature of motor are analyzed, and the temperature calculation results are compared when the oil friction loss and copper loss are constant and variable. Then, the bidirectional coupling mode between radiator temperature field and cooling system internal flow field is determined based on the structural parameters of radiator and cooling circulation impeller. The circulation flow is simulated and the influence of different loss unidirectional coupling modes on the temperature field is compared. Finally, the cooling system design procedure is proposed to obtain the matching relationship of the same cooling system structure parameters of the two temperature field models. Experimental validation is presented, and a more reasonable temperature field model is obtained under the coupling mode proposed. It provides the necessary theoretical basis for the research on the submersible motor cooling system.


2019 ◽  
Vol 9 (8) ◽  
pp. 1698 ◽  
Author(s):  
Du ◽  
Yue ◽  
Liu ◽  
Liang ◽  
Wang ◽  
...  

Modelling methods for the transient temperature field of wear land on the flank of end mills have been proposed to address the challenges of inaccurate prediction in the temperature field of end mills during the high-speed peripheral milling of Ti6Al4V that is a titanium alloy. A transient temperature rise model of wear land on the flank of end mills was constructed under the influence of heat sources in the primary shearing zone (PSZ), rake-chip zone (RCZ), flank-workpiece zone (FWZ), and dissipating heat source. Then the transient temperature field model of wear land on the flank of end mills was constructed. Finally, the transient temperature field model of wear land on the flank of end mills was constructed. Comparison of simulation result and experimental data verified the accuracy of the model. In sum, the proposed model may provide a temperature model support for future studies of flank wear rate in end mill modeling.


Sign in / Sign up

Export Citation Format

Share Document