COATING LAYER AND CORROSION PROTECTION CHARACTERISTICS IN SEA WATER WITH VARIOUS THERMAL SPRAY COATING MATERIALS FOR STS304

2010 ◽  
Vol 17 (03) ◽  
pp. 299-305 ◽  
Author(s):  
SEONG-JONG KIM ◽  
YONG-BIN WOO

We investigated the optimal method of application and the anticorrosive abilities of Zn , Al , and Zn + 15%Al spray coatings in protecting stainless steel 304 (STS304) in sea water. If a defect such as porosity or an oxide layer, causes STS304 to be exposed to sea water, and the thermal spray coating material will act as the cathode and anode, respectively. The Tafel experiments revealed that Al -coated specimens among applied coating methods had the lowest corrosion current densities. As the corrosion potential decreases with increasing corrosion current density, we estimated the characteristics and lifetime of the protective thermal spray coating layer in the galvanic cell formed by the thermal spray coating layer and STS304.

In the industries, different components of different materials are being used in a different service environment, in the view of this requirement day by day specific surface properties are demanding by industries to enhance the product life cycle. A range of surface protection techniques are accessible for various apps with a common goal of protecting a part or object that is subjected to a chemical environment. This process leads to decreases manufacturing cost as no need to fabricate a new part. Commercially Coating materials include strong and rigid metal alloys, ceramics and polymers, composites material are available for durable protection. There are different methods of thermal spray such as flame spray, D-gun spray, high-velocity oxy-fuel Spray, Plasma Spray, and cold spray process have been introduced and investigated. Even though each method has distinct values and procedures that limit their applications. However, there are many things to understand that are used to overcome the lack of thermal spray coating methods by combining process parameters. In this article, we have discussed the various coating materials have been used commercially, and further categorized and compared various thermal spray processes.


2018 ◽  
Vol 284 ◽  
pp. 1151-1156
Author(s):  
Lenar N. Shafigullin ◽  
A.R. Ibragimov ◽  
A.I. Saifutdinov

C. C. Berndt advanced investigations of mechanical properties of thermal spray coatings under 4-point bending. He found that this investigation method is sensitive to the mechanical properties of thermal spray coatings.This paper contains the detailed investigation results for thermal spray coatings of zirconium dioxide under 4-point bending, i.e. tests of the specimens subjected to spraying at varying conditions and pre-test soaking with the various duration at 1100 °С.It was established how the mechanical properties of thermal spray coatings changed depending on the spraying mode and high temperature soaking. The test results show that the double heat treatment of coatings is more preferable than one-time heat treatment as it make the properties change linearly. It is more easily controllable during operation of the components with thermal spray coating.


Author(s):  
A. Scrivani ◽  
N. Antolotti ◽  
S. Bertini ◽  
G. Viola ◽  
R. Groppetti ◽  
...  

Abstract The paper discusses the testing methodology and identifies the analytical protocols, with proper validation, in order to evaluate the compatibility of thermal spray coatings in the food production technology, according to EU and FDA applicable standards. A brief state-of-the-art analysis of the international standards on food additives and human health is given, namely on indirect food additives (as defined in 21 CFR 170.3(e)), that can migrate into the food during the process. An outline of the test protocols, based on contact between coating and food simulating solvents in a set time/temperature conditions, are presented, and the main phases for the proposed testing methodology, as the choice of the simulating solvent, the migration cell design and the time/temperature conditions, are discussed. Finally the proposed methodology and protocols are validated through a thermal spray coating for food process application test case.


2007 ◽  
Vol 353-358 ◽  
pp. 2403-2406
Author(s):  
Koichi Taniguchi ◽  
Manabu Enoki ◽  
Koichi Tomita

AE method is a well-known technique for in-situ monitoring of damage behavior by attached piezoelectric transducer. However, this conventional detection of AE signals has certain limitations. In recent years, numerous efforts have addressed the substitution of laser-based techniques for ultrasonic nondestructive evaluation in place of conventional piezoelectric transducers. Especially, a laser interferometer can be used to measure a displacement or velocity at materials surface using Doppler-shift. However, there are few reports referring to the detection of AE signals in the practical materials and testing because of the difficulty of experiments. We developed the AE measurement system with laser interferometer to apply this technique to microcrack evaluation and reported the quantitative AE analysis in various materials. This paper demonstrates AE results from thermal spray coatings at elevated temperature.


2021 ◽  
Author(s):  
Nadimul Haque Faisal ◽  
Rehan Ahmed ◽  
Anil K Prathuru ◽  
Anna Paradowska ◽  
Tung Lik Lee

Abstract Background: During thermal spray coating, residual strain is formed within the coating and substrates due to thermo-mechanical processes and microstructural phase changes. Objective: This paper provides a comprehensive guide to researchers planning to use neutron diffraction technique for thermal spray coatings, and reviews some of these studies. Methods: ENGIN-X at the ISIS spallation source is a neutron diffractometer (time-of-flight) dedicated to materials science and engineering with high resolution testing. The focus is on the procedure of using ENGIN-X diffractometer for thermal spray coatings with a view that it can potentially be translated to other diffractometers. Results: Number of studies involving neutron diffraction analysis in thermal spray coatings remain limited, partly due to limited number of such strain measurement facilities globally, and partly due to difficulty is applying neutron diffraction analysis to measure residual strain in the thermal spray coating microstructure. Conclusions: This technique can provide a non-destructive through-thickness residual strain analysis in thermally sprayed components with a level of detail not normally achievable by other techniques. Neutron sources have been used to measure strains in thermal spray coatings, and here, we present examples where such coatings have been characterised at various neutron sources worldwide, to study residual strains and microstructures.


2020 ◽  
Vol 901 ◽  
pp. 49-54
Author(s):  
Jirasak Tharajak ◽  
Noppakun Sanpo

Thermal spraying is a technology which improves and restores the surface of a solid material. The process can be used to apply coatings to a wide range of materials and components, in order to provide resistance to wear, erosion, cavitation, corrosion, abrasion or heat. In this paper, the study of abrasive and erosive properties of Cr3C2/20%NiCr and FeCrB + Al thermal sprayed coating samples were focused. It was revealed that both received thermal spray coating samples show outstanding abrasive and erosive resistance properties.


Author(s):  
L. Dekhtyar ◽  
A. Kleyman ◽  
S. Berman ◽  
V. Andreychuk

Abstract Future development of thermal spray processes and new composite materials raises an important problem concerning the transition from qualitative to quantitative methods of coatings evaluation. It is well known that thermal spray coating deposition in most cases is accompanied by the formation of temporal and residual stresses through the coating thickness. For proper evaluation of formed stressed state it is extremely important to know the real value of elastic characteristics in different layers of the coating. This problem has become more complicated taking into consideration the variety of materials, different spray parameters, number of coating layers and extreme service conditions. These values can be obtained only from experimentation. Elastic characteristics (EC) could be used in many calculations, such as durability, stiffness, fatigue, vibration and others. This paper describes new methods of experimental determination of elastic characteristics presumed as variable throughout the coating thickness. Influence of coating composition, particle size of initial powders, spray parameters, post-treatment and other factors on elastic modulusses were studied. Obtained experimental data for different materials supplement existing data and can be used for evaluation of residual stresses and other purposes.


Sign in / Sign up

Export Citation Format

Share Document