THERMO-DIFFUSION AND DIFFUSO-THERMO EFFECTS ON MHD SQUEEZING FLOW BETWEEN PARALLEL DISKS

2017 ◽  
Vol 24 (02) ◽  
pp. 1750022 ◽  
Author(s):  
SHEIKH IRFANULLAH KHAN ◽  
SYED TAUSEEF MOHYUD-DIN ◽  
BANDAR BIN-MOHSIN

In this article, Magnetohydrodynamic (MHD) squeezing flow between two parallel disks is considered. The upper disk is taken to be solid and the lower one is permeable. Soret and Dufour effects are measured to explore the thermal-diffusion and diffusion-thermo effects. Governing PDEs are converted into system of ODEs with the support of suitable similarity transforms. Homotopy analysis method (HAM) has been employed to obtain the expressions for velocity, temperature and concentration profiles. Effects of different emerging parameters such as squeezing number [Formula: see text], Hartman number [Formula: see text], Prandtl number Pr, Eckert number Ec, dimensionless length [Formula: see text] and Schmidt number Sc on the flow are also discussed with the help of graphs for velocity, temperature and concentration. The local Nusselt and Sherwood numbers along with convergence of the series solutions are presented with the help of graphs. From the results obtained, we observed that the physical quantities like skin friction coefficient increases with increasing value of Hartmann number [Formula: see text] in the blowing case [Formula: see text] whereas a fall is observed in the suction case [Formula: see text]. However, the rate of heat transfer at upper wall increases with increasing values of Dufour number Du and Soret number Sr for both the suction [Formula: see text] and blowing flow [Formula: see text], whereas, for the larger values of Dufour number Du and smaller values of Soret number Sr, a rapid fall is observed in Sherwood number Sh for both the suction [Formula: see text] and blowing [Formula: see text] cases. A numerical solution is obtained by employing Runge–Kutta method of order four (RK-4) to check the validity and reliability of the developed algorithm. A well agreement is found between both the solutions.

2011 ◽  
Vol 133 (11) ◽  
Author(s):  
T. Hayat ◽  
M. Nawaz ◽  
Awatif A. Hendi ◽  
S. Asghar

The squeezing flow of an incompressible micropolar fluid between two parallel infinite disks is investigated in the presence of a magnetic flied. An analysis of strong and weak interactions has been carried out. Similarity solutions are derived by homotopy analysis method. The variation of dimensionless velocities are sketched in order to see the influence of pertinent parameters. Skin friction coefficient and wall couple stress coefficient have been tabulated. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ime Jimmy Uwanta ◽  
Halima Usman

The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.


2016 ◽  
Vol 21 (1) ◽  
pp. 5-20 ◽  
Author(s):  
K. Das ◽  
S. Jana ◽  
N. Acharya

Abstract In this study, the influence of temperature and wall slip conditions on the unsteady flow of a viscous, incompressible and electrically conducting nanofluid squeezed between two parallel disks in the presence of an applied magnetic field is investigated numerically. Using the similarity transformation, the governing coupled partial differential equations are transformed into similarity non-linear ordinary differential equations which are solved numerically using the Nachtsheim and Swigert shooting iteration technique together with the sixth order Runge-Kutta integration scheme. The effects of various emerging parameters on the flow characteristics are determined and discussed in detail. To check the reliability of the method, the numerical results for the skin friction coefficient and Nusselt number in the absence of slip conditions are compared with the results reported by the predecessors and an excellent agreement is observed between the two sets of results.


2021 ◽  
Vol 10 (2) ◽  
pp. 200-213
Author(s):  
Manik Das ◽  
Susmay Nandi ◽  
Bidyasagar Kumbhakar ◽  
Gauri Shanker Seth

The purpose of the present analysis is to investigate the Soret and Dufour effects on steady and incompressible MHD nonlinear convective flow of tangent hyperbolic nanofluid over a permeable stretching surface with multiple slip conditions at the wall. Also, nonlinearly varying thermal radiation, heat generation and chemical reaction along with a vanishing nanoparticle mass flux condition at the surface are taken into account. Further, Rosseland’s approximation for an optically thick and grey medium is used to approximate heat flux due to radiation. Suitable similarity transformations are employed to transform governing PDEs into a system of ODEs. The resulting nonlinear equations are then solved numerically using the shooting technique based on the Runge-Kutta Cash-Karp method. The upshots of various physical parameters on velocity, temperature and concentration distributions are illustrated and displayed through figures. The variations in coefficients of local skin friction, Nusselt and Sherwood numbers are explained and presented in tabular form. The obtained results are validated with the previously reported results for a particular case of the present fluid flow problem, and an outstanding correlation is noticed from the comparison. Graphical results reveal that the nonlinear convection parameters for both temperature and concentration accelerate the primary flow. However, the Dufour number diminishes the fluid temperature near the wall, and the Soret number uplifts the concentration profile within the boundary layer.


2020 ◽  
Vol 31 (02) ◽  
pp. 2050032
Author(s):  
Basant K. Jha ◽  
Yusuf Y. Gambo

This paper presents an analytical solution for transient natural convection heat and mass transfer flow in a vertical channel with Soret and Dufour effects. Due to the presence of these two effects, energy and concentration equations are coupled. The dimensionless governing equations for momentum, energy and concentration are first decoupled using perturbation method and then solved using Laplace Transform Technique (LTT) under relevant initial and boundary conditions. The expressions for temperature, concentration, velocity, rate of heat transfer, rate of mass transfer and skin-friction are obtained. Numerical solutions are also obtained using pdepe in MATLAB so as to validate the accuracy of the proposed analytical method. The effects of Soret parameter, Dufour parameter, Grashof number, modified Grashof number, Prandtl number, Schmidt number and dimensionless time are presented graphically and discussed. It is observed that the temperature and velocity increase with increase in Dufour number, while concentration decreases with increase of Dufour number. The Dufour effect is more significant on the temperature and velocity in comparison to concentration. Moreover, it is observed that the concentration and velocity increase with increase in Soret number while the impact of Soret number is just contrast on temperature variation.


2016 ◽  
Vol 20 (6) ◽  
pp. 1973-1981 ◽  
Author(s):  
Rizwan Haq ◽  
Zakia Hammouch ◽  
Waqar Khan

Present study is dedicated to investigate the water functionalized carbon nanotubes squeezing flow between two parallel discs. Moreover, we have considered magnetohydrodynamics effects normal to the disks. In addition we have considered two kind of carbon nanotubes named: single wall carbon nanotubes (SWCNT) and multiple wall carbon nanotubes (MWCNT) with in the base fluid. Under this squeezing flow mechanism model has been constructed in the form of partial differential equation. Transformed ordinary differential equations are solved numerically with the help of Runge-Kutta-Fehlberg method. Results for velocity and temperature are constructed against all the emerging parameters. Comparison among the SWCNT and MWCNT are drawn for skin friction coefficient and local Nusselt number. Conclusion remarks are drawn under the observation of whole analysis.


Author(s):  
B. Nagabhushnam Reddy ◽  
S. Vijaya Kumar Varma ◽  
B. Rushi Kumar

The Soret and Dufour on magnetohydrodynamic (MHD) laminar boundary layer flow past stretching plate with heat and mass transfer are studied. The governing partial differential equations are transformed into ordinary differential equations before being solved numerically by a fourth order Runga-Kutta method along with shooting technique. Numerical results are obtained for the skin-friction coefficient, the local Nusselt number and local Sherwood number as well as the velocity, temperature and concentration profiles for different values of the governing parameters, namely, the magnetic parameter, Soret number, Dufour number, Schmidt number and Prandtl number. The numerical results are compared to those of an earlier study and found to be in excellent agreement.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Mehdi Rashidi ◽  
Mohamed Ali ◽  
Behnam Rostami ◽  
Peyman Rostami ◽  
Gong-Nan Xie

The homotopy analysis method (HAM) with two auxiliary parameters is employed to examine heat and mass transfer in a steady two-dimensional magneto hydrodynamic viscoelastic fluid flow over a stretching vertical surface by considering Soret and Dufour effects. The two-dimensional boundary-layer governing partial differential equations are derived by considering the Boussinesq approximation. The highly nonlinear ordinary differential forms of momentum, energy, and concentration equations are obtained by similarity transformation. These equations are solved analytically in the presence of buoyancy force. The effects of different involved parameters such as magnetic field parameter, Prandtl number, buoyancy parameter, Soret number, Dufour number, and Lewis number on velocity, temperature, and concentration profiles are plotted and discussed. The effect of the second auxiliary parameter is also illustrated. Results show that the effect of increasing Soret number or decreasing Dufour number tends to decrease the velocity and temperature profiles (increase in Sr cools the fluid and reduces the temperature) while enhancing the concentration distribution.


Sign in / Sign up

Export Citation Format

Share Document