MODELING AND MULTI-RESPONSE OPTIMIZATION OF ABRASIVE WATER JET MACHINING USING ANN COUPLED WITH NSGA-II

Author(s):  
ABHIMANYU K. CHANDGUDE ◽  
SHIVPRAKASH B. BARVE

This paper aims to develop a predictive model and optimize the performance of the abrasive water jet machining (AWJM) during machining of carbon fiber-reinforced plastic (CFRP) epoxy laminates composite through a unique approach of artificial neural network (ANN) linked with the nondominated sorting genetic algorithm-II (NSGA-II). Initially, 80 AWJM experimental runs were carried out to generate the data set to train and test the ANN model. During the experimentation, the stand-off distance (SOD), water pressure, traverse speed and abrasive mass flow rate (AMFR) were selected as input AWJM variables and the average surface roughness and kerf width were considered as response variables. The established ANN model predicted the response variable with mean square error of 0.0027. Finally, the ANN coupled NSGA-II algorithm was applied to determine the optimum AWJM input parameters combinations based on multiple objectives.

Author(s):  
Ehsan Shakouri ◽  
Mohammad Abbasi

The abrasive water jet machining is known as a cold cutting process and can be effective for developing cut in the bone in orthopedic surgery to prevent thermal necrosis. This research examined surface roughness and cutting quality of bovine femur bone using abrasive water jet machining. Furthermore, the effect of three parameters was studied including water pressure, traverse speed, and the type of abrasive particles. The feed rate of the abrasive particles was considered 100 g/min, and the levels obtained from pure water jet cutting, bone powder abrasive water jet machining, and sugar abrasive water jet machining were compared with each other. Application of bone powder as an abrasive particle caused improved cutting quality, when compared with pure water jet, and in the best case, it resulted Ra and Rz values of 7.36 and 54.76 μm, respectively at the pressure of 3500 bar and traverse speed of 50 mm/min. The minimum surface roughness was obtained using sugar abrasive particles at the pressure of 3500 bar and traverse speed of 50 mm/min. The values of Ra and Rz parameters measured at the most desirable state were 3.87 and 19.72 μm, respectively. The results suggested that use of sugar as an abrasive material, in comparison with pure water jet and bone powder water jet, resulted in improved cutting quality. Furthermore, elevation of water pressure and reduction of traverse speed had a significant effect on improving surface roughness.


Author(s):  
KSK Sasikumar ◽  
KP Arulshri ◽  
K Ponappa ◽  
M Uthayakumar

Metal matrix composites are difficult to machine in traditional machining methods. Abrasive water jet machining is a state-of-the art technology which enables machining of practically all engineering materials. This article deals with the investigation on optimization of process parameters of abrasive water jet machining of hybrid aluminium 7075 metal matrix composites with 5%, 10% and 15% of TiC and B4C (equal amount of each) reinforcement. The kerf characteristics such as kerf top width, kerf angle and surface roughness were studied against the abrasive water jet machining process parameters, namely, water jet pressure, jet traverse speed and standoff distance. Contribution of these parameters on responses was determined by analysis of variance. Regression models were obtained for kerf characteristics. Contribution of traverse speed was found to be more than other parameters in affecting top kerf width. Water jet pressure influenced more in affecting kerf angle and surface finish. The microstructures of machined surfaces were also analysed by scanning electron microscopy. The scanning electron microscopy investigations exposed the plastic deformation cutting of hybrid 7075 aluminium metal matrix composite. X-ray diffraction analysis results proved the non-entrapment of abrasive particle on the machined surface.


2014 ◽  
Vol 1017 ◽  
pp. 228-233 ◽  
Author(s):  
Yong Wang ◽  
Hong Tao Zhu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Peng Yao ◽  
...  

Abrasive water jet machining is considered as a promising technique in hard and brittle material processing. This paper studies the erosion performance of the alumina ceramics in the different process parameters. In the erosion experiments, alumina ceramics wafers were eroded by the abrasive waterjet machining. The single factor experiments were carried out to understand the effect of different process parameters (jet impact angle, standoff distance, water pressure, abrasive particle diameter) on the material removal rate (MRR), the removal depth and surface roughness (Ra). The experimental results can provide guidance for alumina ceramics abrasive water jet cutting and polishing.


The main aim of this investigation is to study the surface roughness produced on abrasive water jet machining of the twill weaved carbon fibre reinforced epoxy composite. Abrasive water jet machining experiment was conducted as per L9 orthogonal array, by varying water pressure, transverse speed and SOD. The performance of the composite was analysed by measuring the surface roughness. Using Taguchi analysis, the influences of input parameter over the output response was analysed. It was found that the surface roughness is highly influenced by the transverse speed.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7768
Author(s):  
Adam Štefek ◽  
Martin Tyč

Several titanium alloys, i.e., grade 2 Ti, Ti6Al4V and NiTi alloy, prepared by selected deformation procedures were subjected to abrasive water jet (AWJ) cutting and subsequently analysed. The study describes samples’ preparations and respective material structures. The impact of deformation processing of the selected alloys on the declination angle during cutting, and the results of measurements of surface wall quality performed for the selected samples at the Department of Physics of Faculty of Electrical Engineering and Computer Science at VŠB–Technical University of Ostrava, are presented and discussed, as are also the influences of structural features of the processed titanium alloys on surface qualities of the investigated samples. The results showed that the highest resistance to AWJ machining exhibited the Ti6Al4V alloy prepared by forward extrusion. Its declination angle (recalculated to the thickness 10 mm to compare all the studied samples) was 12.33° at the traverse speed of 100 mm/min, pumping pressure of 380 MPa, and abrasive mass flow rate of 250 g/min.


2011 ◽  
Vol 383-390 ◽  
pp. 1764-1768 ◽  
Author(s):  
Vijay Kumar Pal ◽  
Puneet Tandon

This Abrasive Water Jet Machining (AWJM) process is usually used to through cut materials which are difficult to cut by conventional machining processes. This process may also be used for controlled depth milling (CDM) of materials. This work primarily focuses on controlling the abrasive flow rate to reduce the time for machining the component. Here, an experimental setup is made with a modified attachment for abrasive feed system to machine for Ti-6Al-4V alloy. The work also investigates the surface morphology, tolerance on depth of machining and surface waviness for the modified setup. With change in mass flow rate of abrasive, the traverse speed is altered and its effects on the machining time are studied. It is observed that traverse speed is an important parameter in the case of CDM for AWJM. It is also shown that surface waviness can be reduced as traverse speed is increased by using modified abrasive feeding system.


2013 ◽  
Vol 372 ◽  
pp. 402-405 ◽  
Author(s):  
T.V.K. Gupta ◽  
J. Ramkumar ◽  
Puneet Tandon ◽  
N.S. Vyas

The current trend in abrasive water jet machining process is getting focused on milling applications using this technique. Abrasive water jet machining (AWJM) process is a well defined process for cutting or part separation. The present paper reports on the geometry obtained in controlled depth milling process of different materials. The dimensions considered in this paper are the pocket depth and the change in the kerf profile. Experimental observations are made relating the kerf profile with traverse speed and the mechanical properties of the work piece material. Tool paths for obtaining the pocket of size 9 mm x 20 mm are generated in raster mode and machined using AWJM on materials of varying hardness and at different traverse speeds. It is observed that there is a significant change in the geometry of the kerf profile and also the depth of the pocket with speed in conjuction with the material hardness.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5471
Author(s):  
Kumari Bimla Mardi ◽  
Amit Rai Dixit ◽  
Alokesh Pramanik ◽  
Pavol Hvizdos ◽  
Ashis Mallick ◽  
...  

This study investigated the effect of abrasive water jet kinematic parameters, such as jet traverse speed and water pressure, on the surface of magnesium-based metal matrix nanocomposites (Mg-MMNCs) reinforced with 50 nm (average particle size) Al2O3 particles at concentrations of 0.66 and 1.11 wt.%. The extent of grooving caused by abrasive particles and irregularities in the abrasive waterjet machined surface with respect to traverse speed (20, 40, 250 and 500 mm/min), abrasive flow rate (200 and 300 g/min) and water pressure (100 and 400 MPa) was investigated using surface topography measurements. The results helped to identify the mode of material disintegration during the process. The nanoindentation results show that material softening was decreased in nanocomposites with higher reinforcement content due to the presence of a sufficient amount of nanoparticles (1.11 wt.%), which protected the surface from damage. The values of selected surface roughness profile parameters—average roughness (Ra), maximum height of peak (Rp) and maximum depth of valleys (Rv)—reveal a comparatively smooth surface finish in composites reinforced with 1.11 wt.% at a traverse speed of 500 mm/min. Moreover, abrasive waterjet machining at high water pressure (400 MPa) produced better surface quality due to sufficient material removal and effective cleaning of debris from the machining zone as compared to a low water pressure (100 MPa), low traverse speed (5 mm/min) and low abrasive mass flow rate (200 g/min).


Author(s):  
Munusamy Rajesh ◽  
Rajkumar Kaliyamoorthy ◽  
Ramraji Kirubakaran

High-strength environment-friendly metal-fiber laminates (MFLs) are increasingly used for primary structures for various engineering applications. The surface roughness variation and delamination factor of a titanium (Ti) metal-cored basalt/flax fiber laminate were investigated during abrasive water jet drilling (AWJD). The present AWJD investigation is to establish the correlation of four important process independent variables of WJP—water jet pressure, TS—traverse speed, QMFR—abrasive mass flow rate, and SOD—stand-off distance to the delamination factor (Fd-top) and surface roughness (Ra) of drilled hole. Central composite design (CCD) of L29 orthogonal array was used to perform the experimental observations. The statistical approach (ANOVA) was employed to determine the contribution of individual AWJD parameters to drilling operation. It is identified from experimental results that the water jet pressure is the most predominant process parameter and its contribution on Fd-top and Ra were 74.28% and 72.48%, respectively. Increasing the water pressure from low (160 MPa) to its higher range (320 MPa) showed that the surface roughness and delamination factor were reduced irrespective of other drilling parameters. Increased water pressure provides enough kinetic energy for abrasive particles to facilitate a higher penetration potential during the drilling process. Scanning Electron Microscope (SEM) images show the machining-induced damages like ploughing marks, uncut fibers, ridges, craters, matrix smearing, and delamination on an abrasive water jet drilled surface of prepared MFL.


Sign in / Sign up

Export Citation Format

Share Document