NUMERICAL SIMULATION AND TESTING OF A COMPOSITE-STIFFENED STRUCTURE UNDER COMBINED BUCKLING LOADS

2010 ◽  
Vol 10 (04) ◽  
pp. 871-884 ◽  
Author(s):  
E. KARACHALIOS ◽  
C. VRETTOS ◽  
Z. MARIOLI-RIGA ◽  
C. BISAGNI ◽  
P. CORDISCO ◽  
...  

Prediction of the buckling behavior of structures is of great interest in the aerospace industry, and extensive research is taking place worldwide in that area. The current work concerns numerical simulation of the collapse test of a closed stiffened composite box subjected to compression followed by torsion. Numerical simulation is performed and the results are correlated with experimental findings. The objective is to validate the numerical model and detect any deficiencies of the modeling procedure. For this purpose, a series of quantities numerically predicted are directly compared with experimental ones: strains, displacements, deformation plots and load–displacement curves. The physical test article also contains artificial stringer–skin debondings realized via Teflon film inserts. The energy release rates are calculated at the debonding front using the virtual crack closure technique. The FE model is slightly stiffer than the actual structure but the numerical results are at a reasonable level of agreement with the experimental data.

2009 ◽  
Vol 76 (6) ◽  
Author(s):  
Hu Yi-Feng ◽  
Chen Yi-Heng

In this paper we extend the M-integral concept (Eshelby, J. D., 1956, The Continuum Theory of Lattice Defects, Solid State Physics, F. Seitz and D. Turnbull, eds., Academic, New York, pp. 79–141; Eshelby, J. D., 1970, The Energy Momentum Tensor in Continuum Mechanics, Inelastic Behavior of Solids, M. F. Kanninen, ed., McGraw-Hill, New York, pp. 77–115; Eshelby, J. D., 1975, “The Elastic Energy-Momentum Tensor,” J. Elast., 5, pp. 321–335; Knowles, J. K., and Sternberg, E., 1972, “On a Class of Conservation Laws in Linearized and Finite Elastostatics,” Arch. Ration. Mech. Anal., 44, pp. 187–211; Budiansky, B., and Rice, J. R., 1973, “Conservation Laws and Energy Release Rates,” ASME J. Appl. Mech., 40, pp. 201–203; Freund, L. B., 1978, “Stress Intensity Factor Calculations Based on a Conservation Integral,” Int. J. Solids Struct., 14, pp. 241–250; Herrmann, G. A., and Herrmann, G., 1981, “On Energy Release Rates for a Plane Cracks,” ASME J. Appl. Mech., 48, pp. 525–530; King, R. B., and Herrmann, G., 1981, “Nondestructive Evaluation of the J- and M-Integrals,” ASME J. Appl. Mech., 48, pp. 83–87) to study the degradation of a brittle plan strip caused by irreversible evolution: the cracks coalescence under monotonically increasing loading. Attention is focused on the change of the M-integral before and after coalescence of two neighborly located cracks inclined each other. The influences of different orientations of the two cracks and different coalescence paths connecting the two cracks on the M-integral are studied in detail. Finite element analyses reveal that different orientations of the two cracks lead to different critical values of the M-integral at which the coalescence occurs. It is concluded that the M-integral does play an important role in the description of the damage extent and damage evolution. However, it only provides some outside variable features. This means that the complete failure mechanism due to damage evolution cannot be governed by a single parameter MC as proposed by Chang and Peng, 2004, “Use of M integral for Rubbery Material Problems Containing Multiple Defects,” J. Eng. Mech., 130(5), pp. 589–598. It is found that there is an inherent relation between the M-integral and the reduction of the effective elastic moduli as the orientation of one crack varies, i.e., the larger the M-integral is, the larger the reduction is. Of great significance is that the M-integral is inherently related to the change of the total potential energy for a damaged brittle material regardless of the detailed damage features or damage evolution. Therefore, this provides a useful and convenient experimental technique to measure the values of M-integral for a damaged brittle material from initial damage to final failure without use of many stain gages (King, R. B., and Herrmann, G., 1981, “Nondestructive Evaluation of the J- and M-Integrals,” ASME J. Appl. Mech., 48, pp. 83–87).


1970 ◽  
Vol 6 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Charles W. George ◽  
Aylmer D. Blakely

Sign in / Sign up

Export Citation Format

Share Document