VIBRATION ANALYSES OF CRACKED PLATES BY THE RITZ METHOD WITH MOVING LEAST-SQUARES INTERPOLATION FUNCTIONS

2014 ◽  
Vol 14 (02) ◽  
pp. 1350060 ◽  
Author(s):  
C. S. HUANG ◽  
C. W. CHAN

The solutions for the vibrations of cracked thin plates are obtained by the Ritz method with admissible functions. Based on the classical plate theory, the basis functions comprising polynomials and crack functions are adopted to generate the admissible functions by the moving least-squares approach for a set of nodes randomly distributed in the domain. The crack functions account for the singular behaviors of stress resultants at crack tip(s), which are discontinuous in displacement and slope across the crack. The present solutions are validated through convergence tests of frequencies and by comparison with the published results for simply-supported cracked rectangular plates. The solutions are further employed to determine the natural frequencies of cantilevered skewed rhombic and isosceles triangular plates and completely free circular plates, each with a crack of varying length, location and orientation. The numerical results are tabulated and some corresponding mode shapes are also presented, by means of nodal patterns. Most of the results shown here are new to the literature.

2011 ◽  
Vol 78 (6) ◽  
Author(s):  
Yajuvindra Kumar ◽  
R. Lal

An analysis and numerical results are presented for buckling and transverse vibration of orthotropic nonhomogeneous rectangular plates of variable thickness using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh–Ritz method on the basis of classical plate theory when uniformly distributed in-plane loading is acting at two opposite edges clamped/simply supported. The Gram–Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of various plate parameters such as nonhomogeneity parameters, aspect ratio together with thickness variation, and in-plane load on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported, and free edges correct to four decimal places. Three dimensional mode shapes for a specified plate for all the four boundary conditions have been plotted. By allowing the frequency to approach zero, the critical buckling loads in compression for various values of plate parameters have been computed correct to six significant digits. A comparison of results with those available in the literature has been presented.


2013 ◽  
Vol 20 (5) ◽  
pp. 879-894 ◽  
Author(s):  
Roshan Lal ◽  
Renu Saini

The present work analyses the buckling and vibration behaviour of non-homogeneous rectangular plates of uniform thickness on the basis of classical plate theory when the two opposite edges are simply supported and are subjected to linearly varying in-plane force. For non-homogeneity of the plate material it is assumed that young's modulus and density of the plate material vary exponentially along axial direction. The governing partial differential equation of motion of such plates has been reduced to an ordinary differential equation using the sine function for mode shapes between the simply supported edges. This resulting equation has been solved numerically employing differential quadrature method for three different combinations of clamped, simply supported and free boundary conditions at the other two edges. The effect of various parameters has been studied on the natural frequencies for the first three modes of vibration. Critical buckling loads have been computed. Three dimensional mode shapes have been presented. Comparison has been made with the known results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
María Virginia Quintana ◽  
Ricardo Oscar Grossi

This paper deals with a general variational formulation for the determination of natural frequencies and mode shapes of free vibrations of laminated thin plates of trapezoidal shape with an internal line hinge restrained against rotation. The analysis was carried out by using the kinematics corresponding to the classical laminated plate theory (CLPT). The eigenvalue problem is obtained by employing a combination of the Ritz method and the Lagrange multipliers method. The domain of the plate is transformed into a rectangular domain in the computational space by using nonorthogonal triangular coordinates and the transverse displacements are approximated with a set of simple polynomials automatically generated and expressed in the triangular coordinates. The developed algorithm allows obtaining approximate analytical solutions for mentioned plate with different geometries, aspect ratio, position of the line hinge, and boundary conditions including translational and rotational elastically restrained edges. It allows studying the influence of the mentioned line on the vibration frequencies and respective mode shapes. The algorithm can easily be programmed and it is numerically stable. Additionally, as a particular case, the results of triangular plates can be easily generated.


Author(s):  
Vu Ngoc Viet Hoang ◽  
Dinh Gia Ninh

In this paper, a new plate structure has been found with the change of profile according to the sine function which we temporarily call as the sinusoidal plate. The classical plate theory and Galerkin’s technique have been utilized in estimating the nonlinear vibration behavior of the new non-rectangular plates reinforced by functionally graded (FG) graphene nanoplatelets (GNPs) resting on the Kerr foundation. The FG-GNP plates were assumed to have two horizontal variable edges according to the sine function. Four different configurations of the FG-GNP plates based on the number of cycles of sine function were analyzed. The material characteristics of the GNPs were evaluated in terms of two models called the Halpin–Tsai micromechanical model and the rule of mixtures. First, to verify this method, the natural frequencies of new non-rectangular plates made of metal were compared with those obtained by the Finite Element Method (FEM). Then, the numerical outcomes are validated by comparing with the previous papers for rectangular FGM/GNP plates — a special case of this structure. Furthermore, the impacts of the thermal environment, geometrical parameters, and the elastic foundation on the dynamical responses are scrutinized by the 2D/3D graphical results and coded in Wolfram-Mathematica. The results of this work proved that the introduced approach has the advantages of being fast, having high accuracy, and involving uncomplicated calculation.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


Author(s):  
Khuc Van Phu ◽  
Le Xuan Doan ◽  
Nguyen Van Thanh

 In this paper, the governing equations of rectangular plates with variable thickness subjected to mechanical load are established by using the classical plate theory, the geometrical nonlinearity in von Karman-Donnell sense. Solutions of the problem are derived according to Galerkin method. Nonlinear dynamic responses, critical dynamic loads are obtained by using Runge-Kutta method and the Budiansky–Roth criterion. Effect of volume-fraction index k and some geometric factors are considered and presented in numerical results.


Author(s):  
Yoshihiro Narita

Abstract The free vibration behavior of rectangular plates provides important technical information in structural design, and the natural frequencies are primarily affected by the boundary conditions as well as aspect and thickness ratios. One of the three classical edge conditions, i.e., free, simple supported and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations, the present paper introduces the Polya counting theory in combinatorial mathematics, and formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three edge conditions and is used to numerically verify the numbers. In numerical experiments, the number of combinations in the free vibration behaviors is determined for some plate models by using the derived formulas, and are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the Ritz method.


2005 ◽  
Vol 72 (1) ◽  
pp. 1-9 ◽  
Author(s):  
O. G. McGee ◽  
J. W. Kim ◽  
A. W. Leissa

Transverse displacement and rotation eigenfunctions for the bending of moderately thick plates are derived for the Mindlin plate theory so as to satisfy exactly the differential equations of equilibrium and the boundary conditions along two intersecting straight edges. These eigenfunctions are in some ways similar to those derived by Max Williams for thin plates a half century ago. The eigenfunctions are called “corner functions,” for they represent the state of stress currently in sharp corners, demonstrating the singularities that arise there for larger angles. The corner functions, together with others, may be used with energy approaches to obtain accurate results for global behavior of moderately thick plates, such as static deflections, free vibration frequencies, buckling loads, and mode shapes. Comparisons of Mindlin corner functions with those of thin-plate theory are made in this work, and remarkable differences are found.


1960 ◽  
Vol 27 (1) ◽  
pp. 54-58 ◽  
Author(s):  
V. L. Salerno ◽  
M. A. Goldberg

The three partial differential equations derived by Dr. E. Reissner2, 3 have been reduced to a fourth-order partial differential equation resembling that of the classical plate theory and to a second-order differential equation for determining a stress function. The general solution for the two partial differential equations has been applied to a simply supported plate with a constant load p and to a plate with two opposite edges simply supported and the other two edges free. Numerical calculations have been made for the simply supported plate and the results compared with those of classical theory. The calculations for a wide range of parameters indicate that the deviation is small.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7712
Author(s):  
Chiung-Shiann Huang ◽  
Hao-Ting Lee ◽  
Pin-Yu Li ◽  
Ming-Ju Chang

In this study, the moving least squares (MLS)-Ritz method, which involves combining the Ritz method with admissible functions established using the MLS approach, was used to predict the vibration frequencies of cracked functionally graded material (FGM) plates under static loading on the basis of the three-dimensional elasticity theory. Sets of crack functions are proposed to enrich a set of polynomial functions for constructing admissible functions that represent displacement and slope discontinuities across a crack and appropriate stress singularity behaviors near a crack front. These crack functions enhance the Ritz method in terms of its ability to identify a crack in a plate. Convergence studies of frequencies and comparisons with published results were conducted to demonstrate the correctness and accuracy of the proposed solutions. The proposed approach was also employed for accurately determining the frequencies of cantilevered and simply supported side-cracked rectangular FGM plates and cantilevered internally cracked skewed rhombic FGM plates under uniaxial normal traction. Moreover, the effects of the volume fractions of the FGM constituents, crack configurations, and traction magnitudes on the vibration frequencies of cracked FGM plates were investigated.


Sign in / Sign up

Export Citation Format

Share Document