Development of a New Nonbuckling Segmented Brace

2015 ◽  
Vol 15 (08) ◽  
pp. 1540012 ◽  
Author(s):  
H. Hao

This paper introduces a new design of segmented nonbuckling brace member for use in frame structures to resist earthquake loading. The proposed segmented brace member consists of one or more segments connected by either tension-only or compressive force controlled joints. Because it cannot resist or can only resist a limited amount of compressive force, it is effective only under tension, but buckling would not be a failure mechanism of the brace. Its capability of mitigating seismic responses remains effective throughout the entire ground excitation duration. The other advantages of this new design include light weight, easy installation, easy replacement, controlled damage locations, and minimum or no residual structural deformation. The disadvantage is that full energy dissipations can be achieved only when it is in tension. Therefore they will be effective in a frame structure only when cross bracings are used. This paper presents experimental tests and numerical simulation results to examine the effectiveness of this innovative brace member in mitigating seismic responses of frame structures. Laboratory cyclic loading tests on a single brace member and on steel frames without bracing or with cross bracing by conventional brace or segmented brace are carried out. The testing results are analyzed and compared. The effectiveness of segmented brace members in mitigation of seismic loading effects on frame structures is demonstrated. Nonlinear response analyses are then carried out to investigate the performance of this new segmented brace applied to a steel frame structure subjected to ground motions of different amplitudes. The results demonstrate that this new design is effective in mitigating seismic loading effect throughout the entire ground motion duration.

2021 ◽  
Vol 907 (1) ◽  
pp. 012010
Author(s):  
J Aloysius ◽  
J A Sumito ◽  
D Prayogo ◽  
H Santoso

Abstract Damages resulted from earthquakes are a loss in the economic sector. The structure of multi-story buildings needs an earthquake-proof design with higher performance to reduce such losses. By utilizing the metaheuristic algorithm, this study aims to identify the most compatible brace configuration and profile used in a concentrically braced steel frame structures with minimal total weight and that will meet the safety requirements. This algorithm is suitable owing to the fact that it is able to find solutions to any known optimization problem either through Particle Swarm Optimization (PSO), Symbiotic Organisms Search (SOS), or Differential Evolution (DE). The performance of these algorithms will demonstrated in a form of comparison through a case study of optimizing a 5-span, 6-story steel frame structure. These systems will determine the lightest frame weight, which also correlates to a lower construction cost, without compromising the constraints of SNI 1726:2019, SNI 1727:2020, SNI 1729:2020, and AISC 341-16. Based on the results of data processing, SOS is shown to achieve the highest algorithm performance compared to PSO and DE.


2018 ◽  
Vol 4 (1) ◽  
pp. 27
Author(s):  
Osman Fatih Bayrak ◽  
Seda Yedek ◽  
Muhammet Musab Erdem ◽  
Murat Bikce

Infill walls consisting of materials such as hollow concrete, hollow clay and autoclaved aerated concrete bricks are not only preferred in reinforced concrete buildings but also in steel frame structures. It is a well-known fact that infill walls limit the displacement of frames under horizontal loads. However, they may also bring about certain problems due to being placed randomly in horizontal and discontinuously in vertical directions for some architectural reasons. Moreover, cracks in frame-wall joints are observed in steel frame structures in which ductile behaving steel and brittle behaving infill walls are used together. In this study, the effect of infill walls on steel frames has been investigated. In the steel frame structure chosen for the study, four different situations consisting of different combinations of infill walls have been modeled by using ETABS Software. Later, the pushover analyses have been performed for all the models and their results have been compared. As a result of the analyses done by using the equivalent diagonal strut model, it has been found out that infill walls limit the displacement of steel frames and increase the performance of a structure. However, it has been also determined that in the steel frame structure in which the infill walls have been placed discontinuously in vertical and asymmetrically in horizontal, infill walls may lead to torsional and soft story irregularities. As a result, it is possible to observe cracks in the joints of infill walls and steel frame, the deformation properties of which differ, unless necessary precautions are taken.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1245-1248
Author(s):  
Zhuo Jun Zeng ◽  
Jun Ping Wang ◽  
Yan Xiang Li

This article analysis stairs effect on steel frame structure under seismic loading by using the finite element software MIDAS Gen. Detailed analyzing impact of stairs on the self-vibration period, period ratio, the story drift and other design indexes in designing of the impact under seismic loading. Analysis shows that stairs have great effects on the design index of steel frame structure. Therefore the stair effect must be considered in analysis of structure design and modeling.


2014 ◽  
Vol 638-640 ◽  
pp. 244-249
Author(s):  
Ya Bo Wang ◽  
Gao Feng Dou ◽  
Chuan Hao Xi ◽  
Lei Qian ◽  
Han Ting Liu

The types of assembly floor slab member and the present development situation of assembly floor slab standardization at home and abroad is presented in the article, as well as assembly floor slab layout schemes and its advantage and disadvantage is presented, and the assembly floor slab standardization scheme is proposed to promote the application of assembly floor slab in steel frame structures.


2011 ◽  
Vol 243-249 ◽  
pp. 6197-6201
Author(s):  
You Liang Fang ◽  
Bing Yin Gao ◽  
Jing Yao Duan

In this paper, different types of steel frame structure under earthquake are adopted as the analyzed object of structural collapse. Seismic waves can be applyed into the structure in form of dynamic acceleration in ANSYS/LS-DYNA. The whole process of earthquake effects on the structure is simulated truly. It is helpful to realize and understand the failure mechanism and space mechanism of the different forms of steel frame structures. This paper can also provide a reference for reinforcement and maintenance of structure and a basis of anti-seism design of structure.


2021 ◽  
Vol 21 (5) ◽  
pp. 1-9
Author(s):  
Jong-Won Lee

The impedance-based damage detection technique has the potential for health monitoring of different types of structures. However, it is necessary to consider the temperature effect on the impedance signal in applying this technique to actual structures. In this study, an effective impedance-based damage detection method that compensates for the temperature effect was developed. Experimental tests on a steel frame structure connected with high tensile bolts were performed. Moreover, the temperature effect on the impedance damage index was compensated for detecting damage caused by bolt looseness; that is, the relationship between the impedance damage index and the temperature was established through long-term measurements. Based on this relationship, damage detection was performed by compensating for the temperature effect. Because the damage index after the bolt loosening reflects the effects of temperature and damage, it is difficult to evaluate the damage by monitoring only the damage index. However, after compensating for the temperature effect, it was observed that the damage could be estimated precisely. The damage was effectively monitored after measuring the impedance signal and temperature over a specific period for the initial healthy structural state, analyzing the correlation between the impedance damage index and temperature, and setting an appropriate warning criterion based on the correlation.


2012 ◽  
Vol 204-208 ◽  
pp. 1053-1057 ◽  
Author(s):  
Bai Jian Tang ◽  
Sheng Gu ◽  
Jun Ma

How to determine cable’s pretension is one of key problems in pre-stressed mega brace and steel frame structure. According to superposition principle of structural deformation, the inner force increment of pre-stressed cable under vertical and horizontal loads was approached separately by analyzing the structural deformation and inner force increment. Based on the rule that the required pre-tension force of cable equals to the sum of inner force increment of compressed cable under vertical and horizontal load, the qualitative estimation theory on cable’s initial pre-tension considering construction influence is ultimately established.


2012 ◽  
Vol 193-194 ◽  
pp. 1405-1413 ◽  
Author(s):  
Zhu Ling Yan ◽  
Bao Long Cui ◽  
Ke Zhang

This paper conducts analysis on beam-column extended end-plate semi-rigid connection joint concerning monotonic loading and cyclic loading of finite element through ANSYS program, mainly discussed the influence of parameters such as the form of end plate stiffening rib on anti-seismic performance of joint.


2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


Sign in / Sign up

Export Citation Format

Share Document