Kidney Glomerulus Observation in Interactive VR Space

2003 ◽  
Vol 03 (04) ◽  
pp. 629-637
Author(s):  
Osamu Oshiro ◽  
Kumi Kamada ◽  
Masataka Imura ◽  
Kunihiro Chihara ◽  
Eiji Toyota ◽  
...  

This paper presents the system designed to observe kidney glomeruli interactively with conventional CCD cameras and immersive virtual reality (VR) space. First, we captured the X-ray transmitted images and converted them to computer tomogram (CT). Second, the three-dimensional (3D) image was reconstructed using various image processing, binarization, dilation, contraction, labeling and surface rendering. Third, we presented the 3D image on the immersive projection system (IPS) and installed the function of on-line counting of the number of glomeruli. This system provides an observer the immersive environment and enables him to count the kidney glomeruli interactively.

1972 ◽  
Vol 16 ◽  
pp. 336-343
Author(s):  
David G. Grant

AbstractTomographic systems are able to produce cross sectional planar images of three dimensional volumes because of the relative motion of the source, film and the volume under examination. Analysis shows that the image produced is a result of a three dimensional linear filtering process where the filter characteristics are determined by the scan geometry (3). If, instead of integrating continuously on a single film, a set of N radiographs are recorded, each corresponding to a point along the scan trajectory, then a simple filter can be defined to reconstruct the entire three dimensional structure from this data. In this case, the transfer function exhibits repetitive peaks whose spacing is determined by N and whose width is determined by the total scan length. The number of views required to produce the same “blurring” as the continuous case can then be determined by the Nyquist criteria(3).An optical projection system based on circular geometry for producing three dimensional medical images has been fabricated and tested. The technique can be generalized to any geometry and to all x-ray applications where plane-by-plane examination of a structure would prove beneficial.


2012 ◽  
Vol 49 (10) ◽  
pp. 1212-1220 ◽  
Author(s):  
Dinh Hong Doan ◽  
Pierre Delage ◽  
Jean François Nauroy ◽  
Anh Minh Tang ◽  
Souhail Youssef

The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray Formation (Alberta, Canada) has been investigated using high resolution three-dimensional (3D) X-ray microtomography (µCT) and cryo scanning electron microscopy (CryoSEM). µCT images evidenced some dense areas composed of highly angular grains surrounded by fluids, which are separated by larger pores full of gas. In dense areas, 3D image analysis provided porosity values comparable with in situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. µCT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in the literature, has been obtained. Bitumen appears to strongly adhere to the grains, with some grains being completely coated. The curved shape of some bitumen menisci suggests a bitumen wet behaviour.


2007 ◽  
Vol 561-565 ◽  
pp. 263-266
Author(s):  
L. Qian ◽  
Hiroyuki Toda ◽  
Kentaro Uesugi ◽  
Masakazu Kobayashi ◽  
Toshiro Kobayashi

Traditional computational models always assume idealized crack geometry. However, actual crack geometry is very complex in real materials and thus, those simulations do not realistically represent the actual loading conditions of a real crack. In this paper, three-dimensional (3D) image-based simulation was performed to investigate the fracture behavior of an aluminum alloy, and the model takes into account the real crack geometry based on the 3D images of the crack. Accordingly, many essential features of fracture can be identified and interpreted, and some new insight into fracture behavior in real materials can be offered.


2021 ◽  
Vol 28 (1) ◽  
pp. 278-282
Author(s):  
Jin Zhang ◽  
Jun Hu ◽  
Zhisen Jiang ◽  
Kai Zhang ◽  
Peng Liu ◽  
...  

Nano-resolution synchrotron X-ray spectro-tomography has been demonstrated as a powerful tool for probing the three-dimensional (3D) structural and chemical heterogeneity of a sample. By reconstructing a number of tomographic data sets recorded at different X-ray energy levels, the energy-dependent intensity variation in every given voxel fingerprints the corresponding local chemistry. The resolution and accuracy of this method, however, could be jeopardized by non-ideal experimental conditions, e.g. instability in the hardware system and/or in the sample itself. Herein is presented one such case, in which unanticipated sample deformation severely degrades the data quality. To address this issue, an automatic 3D image registration method is implemented to evaluate and correct this effect. The method allows the redox heterogeneity in partially delithiated Li x Ta0.3Mn0.4O2 battery cathode particles to be revealed with significantly improved fidelity.


2018 ◽  
Vol 24 (5) ◽  
pp. 461-470 ◽  
Author(s):  
Orkun Furat ◽  
Thomas Leißner ◽  
Ralf Ditscherlein ◽  
Ondřej Šedivý ◽  
Matthias Weber ◽  
...  

AbstractIn this paper, three-dimensional (3D) image data of ore particle systems is investigated. By combining X-ray microtomography with scanning electron microscope (SEM)-based image analysis, additional information about the mineralogical composition from certain planar sections can be gained. For the analysis of tomographic images of particle systems the extraction of single particles is essential. This is performed with a marker-based watershed algorithm and a post-processing step utilizing a neural network to reduce oversegmentation. The results are validated by comparing the 3D particle-wise segmentation empirically with 2D SEM images, which have been obtained with a different imaging process and segmentation algorithm. Finally, a stereological application is shown, in which planar SEM images are embedded into the tomographic 3D image. This allows the estimation of local X-ray attenuation coefficients, which are material-specific quantities, in the entire tomographic image.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Motoyoshi Yamanaka ◽  
Shin-ichi Sano ◽  
Hamad Bu Alrougha Al Zaabi ◽  
Hiroshi Fujioka ◽  
Yasufumi Iryu

Abstract Rudists are a group of bizarrely shaped marine bivalves that lived in the Tethys Ocean from the Late Jurassic to the latest Cretaceous. They are morphologically variable, including snail-like, cup-like, and horn-like shapes. In the Middle East, Cretaceous carbonates with rudists and rudist fragments are well exposed in many outcrops as well as oil and gas fields. For rudist-bearing carbonates in the subsurface, knowledge of rudist morphology and mode of occurrence must be derived from observation of drillcores; however, understanding the three-dimensional (3D) geometry of rudists from observation of core surfaces is difficult. In paleontological studies of rudists, X-ray computerized tomography (CT) scans have been carried out to reconstruct the inside texture of rudist shells for the purpose of taxonomic research. In contrast, in the oil and gas industry, application of X-ray CT scanning technology is generally focused on direct measurement of reservoir properties. Studies of rudist fossils within drillcores by means of X-ray CT have not yet been conducted. We have developed a new protocol to observe core interiors using X-ray CT. We obtained high-resolution 3D images of rudists in a drillcore by means of surface rendering, volume rendering, and 3D printing. X-ray CT and 3D modeling is a novel method for non-destructive analyses of the morphology and mode of occurrence of fossils within drillcores.


1994 ◽  
Vol 25 (8) ◽  
pp. 83-94 ◽  
Author(s):  
Yoshiki Kawata ◽  
Noburu Niki ◽  
Hitoshi Satoh ◽  
Tatsuo Kumazaki

2013 ◽  
Vol 427-429 ◽  
pp. 1436-1439
Author(s):  
Guo Ping

The real projection system image of 3D Rotating cones based on the Volumetric 3D revelation principle and WPF platform is the true image. Compared with conventional 3D display, this system has the naked eye 3D display, so the viewer is no need to wear 3D glasses and 3D display can be achieved .At the same time, this system has a 360-degree holographic image display. The system is designed by using WPF 3D image, which makes it easy to produce 3D images.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Xiangyu Yang ◽  
Jiqiang Guo ◽  
Li Lu ◽  
Li Zeng

As we all know, any practical computed tomography (CT) projection data more or less contains noises. Hence, it will be inconvenient for the postprocessing of a reconstructed 3D image even when the noise in the projection data is white. The reason is that the noise in the reconstructed image may be nonwhite. X-ray transform can be applied to the three dimensional (3D) CT, depicting the relationship between material density and ray projection. In this paper, nontensor product relationship between the two dimensional (2D) mother wavelet and 3D mother wavelet is obtained by taking X-ray transform projection of 3D mother wavelet. We proved that the projection of the 3D mother wavelet is a 2D mother wavelet if the 3D mother wavelet satisfies certain conditions. So, the 3D wavelet transform of a 3D image can be implemented by the 2D wavelet transform of its X-ray transform projection and it will contribute to the reduction complexity and computation time during image processing. What is more, it can also avoid noise transfer and amplification during the processing of CT image reconstruction.


Sign in / Sign up

Export Citation Format

Share Document